Effect of Ultrasonic Impact Treatment on Fatigue Behavior of Steel Welded Pipes in Petrochemical Corrosive Environment
Subject Areas : journal of New MaterialsM. Daavari 1 , S. A. SadoughVanini 2 , Gh. A. Ashouri 3
1 - دانشجوی کارشناسی ارشد مهندسی خوردگی و حفاظت از مواد، دانشگاه صنعتی امیرکبیر، تهران، بخش مهندسی معدن و متالورژی.
2 - استاد، مهندسی مکانیک، دانشگاه صنعتی امیرکبیر، تهران، بخش مهندسی مکانیک.
3 - مهندس بازرسی فنی مکانیک، پالایشگاه گاز سرخون و قشم، بندرعباس.
Keywords: Corrosion Fatigue Life, SMAW butt Welded Joints, Ultrasonic Impact Treatment, A106-B Steel Pipes,
Abstract :
Fatigue failure analysis is one of the most important issues in different industries such as oil, gas, and petrochemical. On the other hand welding operation is a prevalent and inevitable method for connecting elements and components. Because of presence of inherent defects in these welded joints, fatigue cracks originate and propagate, and failures occur in these zones more than others. Weld toe region is one of the crack and fracture source in welded structures due to stress concentrations and high residual stresses zones. Different methods can be used to improve mechanical behavior of welded structures; such as: peening, dressing and grinding methods, which are known as post weld treatments. Ultrasonic impact treatment is one of the modern and promising technologies which can enhance fatigue behavior of structures by residual stress and geometry effects. It also has some positive effects on corrosion resistance of metals. In this paper, effect of ultrasonic impact treatment on corrosion fatigue life of A106-B carbon steel pipes has been investigated. Evaluation of effect of this post-weld treatment bymicro-hardness test, residual stresses analysis, and weld geometry measurement have been studied as supplementary tests. Improvement in fatigue life due to ultrasonic impact treatment was 99.4 percent. Also fatigue strength has increased by 19.8 percent at 20000 cycles.
1-Welding Technology Institute of Australia, “Introduction to Fatigue of Welded Steel Structures and Post-Weld Improvement Techniques”,TGN-D-2, pp. 1-8, 2006.
2-Ch. V Prudhvi Raj and K. Arun Kumar,“Stress Analysis of Gas Turbine Multi Stage Rotor Assembly”, International Journal of Science and Research, Vol. 3, Issue. 3, pp. 441-445, 2014.
3- Y. Danqing, W. Dongpo and J. Hongyang, Huo. Linxing,“the Effect of Ultrasonic Peening Treatment on the Ultra-Long Life Fatigue Behavior of Welded Joints”, Materials and Design,31, pp. 3299-3307, 2010.
4-H. Gunther, U. Kuhlmann and A. Durr,“Rehabilitation Welded Joints by Ultrasonic Impact Treatment (UIT)”, IABSE Symposium Lisbon, 2005.
5-M. Pedersen, O. Mouritsen, M. Andersen and J. Wenderby, “Comparison of Post Weld Treatment of High Strength Steel Welded Joints in Medium Cycle Fatigue”,International Institute of Welding XIII-2272-09, 2009.
6-M. Shalvandi, Y. Hojjat, A. Abdullah and H. Asadi, “Influence of Ultrasonic Stress Relief on Stainless Steel 316 Specimens; A Comparison with Thermal Stress Relief”, Materials and Design, 46, pp. 713-723, 2012.
7-X. Yang, J. Zhou and X. Ling, “Study on Plastic Damage of AISI 304 Stainless Steel Induced by Ultrasonic Impact Treatment”, Materilas and Design, 36, pp. 477-481, 2012.
8-A. Galtier and E.S. Stanikov, “the Influence of Ultrasonic Impact Treatment on Fatigue Behavior of Welded Joints in High-Strength Steel”, Welding in the World, Vol. 48, pp. 61-66, 2004.
9-K.J. Kirkhope, R. Bell and L. Caron, “Weld Detail Fatigue Life Improvement Techniques”. Part 1: Review, Marine Structures, 12, pp. 447-474,1999.
10-اکرم صالحی؛ سید مجتبی زبرجد؛ ابوالفضل باباخانی؛ محمدصادق ابروی."بررسی ریزساختاری فوم نانوکامپوزیتی آلومینیوم تقویت شده با نانوذرات اکسید سیلیسیوم تولید شده با استفاده از امواج مافوق صوت"، مجله مواد نوین، دوره 4، شماره 16، ص 1-12، تابستان 1393.
11-سمانه صاحبیان سقی؛ سید مجتبی زبرجد؛ جلیل وحدتی خاکی؛ اندرا لاتزری،" تأثیر همزمان عملیات سطحی و امواج آلتراسون بر توزیعپذیری نانولولههای کربنی در زمینه پلیاتیلن"، مجله مواد نوین، دوره 5، شماره 17، ص 41-54، پاییز 1393.
12-Y. Kudryavstev and J. Kleiman,“Fatigue Life Improvement of Tubular Welded Joint by Ultrasonic Peening”, International Institute of Welding, XIII-2117-06, 2006.
13-S. Statinkov, “Guide for Application of Ultrasonic Impact Treatment Improving Fatigue Life of Welded Structures”, International Institute of Welding, XIII-1757-99, 1999.
14-R. Tehrani Yekta, “Acceptance criteria for Ultrasonic Impact Treatment of Highway Steel Bridge”, Ms Thesis, University of Waterloo, Canada, 2012.
15-B. Vilhauer, R. C. Bennet, A. Matamoros and S. Rolfe, “Fatigue Behavior of Welded Cover plates Treated with Ultrasonic Impact Treatment and Bolting”, Engineering Structures, Vol. 24, pp. 163-172, 2012.
16-A. Berg-Pollack, F.-J. Voellmecke and C.M. Sonsino, “Fatigue Strength Improvement by Ultrasonic Impact Treatment of Highly Stressed Spokes of Cast Aluminum Wheels”, International Journal of Fatigue, Vol. 33, Issue 4, pp. 513-518, 2011.
17-A. Abdullah and M. Maleki,“Strength Enhancement of the Welded Structures by Ultrasonic Peening”, Materials and Design, 38, pp. 7-18, 2012.
18-ASTM A106M-13, “Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service”, American Society for Testing and Materials, 2013.
19-ASTM E466-96, “Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Testing of Metallic Materials”, American Society for Testing and Materials, 1996.
20-ASTM E8-04, “Standard Test Methods for Tension Testing of Metallic Materials”, American Society for Testing and Materials, 2004.
21-ASTM E467-99, “Standard Practice for Verification of Constant Amplitude Dynamic Forces in an Axial Fatigue Testing System”, American Society for Testing and Materials, 1999.
22-S. Tsujikawa, A. Miyasaka, M. Veda, S. Ando and T. Yamada, “Alternative for Evaluating Sour Gas Resistance of Low-Alloy Steels and Corrosion-Resistant Alloys”, Corrosion, 49, pp. 409-419, 1993.
23-ASTM E92-82, “Standard Test Method for Vickers Hardness of Metallic Materials”, American Society for Testing and Materials, 2003.
24-ASTM E384-99, “Standard Test Method for Micro indentation Hardness of Materials”, American Society for Testing and Materials, 1999.