Synthesis of MoSi2-20%TiC Nanocomposite by Method Mechanical Activated Self-Propagation Combustion Synthesis (MASHS)
Subject Areas : journal of New MaterialsM. Baderloo 1 * , S. A. Tayebifard 2 , M. Zakeri 3
1 - کارشناس ارشد مهندسی نانو مواد، پژوهشگاه مواد و انرژی کرج
2 - استادیار پژوهشکده نیمه هادیها، پژوهشگاه مواد و انرژی
3 - استادیار پژوهشکده سرامیک، پژوهشگاه مواد و انرژی
Keywords: Nanocomposite, Titanium Carbide, Molybdenum Disilicide, Mechanical Activated Self-Propagation Combustion Synthesis (MASHS),
Abstract :
In this research elements of the raw materials used to form MoSi2-TiC nanocomposite. The plan in this Research procedure was based on combustion synthesis, mechanical activation mechanism (MASHS). Initially Mo, Si, Ti and C elemental powder were weighed by stoichiometry ratio and were milled with weight ratio of ball to powder 5 to 1, 10 to 1 & 15 to 1, milling time 4, 8, 12 hours with 250 and 300 rpm by the planetary mill. After wards the milled powders were compacted to pellet form by uniaxial press and synthesized samples were done in an atmospheric argon controlled tubular furnace with a temperature between 700 - 1100 °C. To identify phases, XRD analysis was used and to evaluate morphology, SEM and TEM images were used. XRD patterns from synthesized samples with (MASHS) method show a successful composite molybdenum disilicide - titanium carbide synthesis. Results show the best process conditions for synthesis MoSi2-TiC nanocomposite with MASHS method was: milling duration about 4 hours, ball to powder weight ratio 15 to 1, mill rotation speed 300 rpm, constant pressure press 300MPa and temperature 850°C. The grain size calculation by reitveld method showed the size of titanium carbide crystallite and molybdenum disilicide in optimum condition of approximately 28 nm and above 100 nm respectively. The images of SEM and TEM proved that a nanostructure composite has been synthesized.
1- حائریان اردکانی ع، همتی م، ترکیبهای بین فلزی، انتشارات دانشگاه فردوسی مشهد،مشهد،1382.
2- طیبی فرد ع، پایان نامه کارشناسی ارشد، " بررسی پارامترهای موثر بر سنتز مولیبدن دی سیلیساید (MoSi2) به روش SHS " پژوهشگاه مواد و انرژی1377.
3- رمضانی م، پایان نامه کارشناسی ارشد، " سنتز درجای پودر نانو کامپوزیتی MoSi2-TiC با روش آلیاژ سازی مکانیکی" دانشگاه آزاد اسلامی واحد ساوه 1390.
4- L. Sun, J. Pan "TiC whisker-reinforced MoSi2 matrix composites",Materials Letters 51, pp270–274, 2001.
5- J. Meng, J. Lu, J. wang, S.yang "Preparation and properties of MoSi2 Composites reinforced by TiC, TiCN, and TiB2" engineering A396, pp277-284, 2005.
6- L. Sun, J. Pan "Fabrication and characterization of TiC-particle-reinforced MoSi2 composite" J.European ceramic society 22, pp791-796, 2002.
7- Sheela, K. Ramasesha, S. Tantri, P.Bhattacharya, K. Anup "Mosi2 and mosi2- based materials as structural ceramics" ,Metals Materials And Processes, 12, pp 181-190, 2003.
8- Q. Zhu, K. Shobu, Y. Zeng, T. Watanabe " Oxidation Behavior Of Hot-Pressed Mosi2-Tic Composite" Journal Of Materials Science36, pp313– 319, 2001.
9- ب.امینی کیا، ص. فیروزی " بررسی تاثیر پارامتر زمان آسیاب کاری بر ریز ساختار نهایی پودر TiB2-TiC نانو کریستالی تولیدی به روش سنتز احتراقی تحت ماکروویو" مجله مواد نوین، جلد 5، شماره 1، پائیز 1393 صفحه 15-26.
10- M. Zakeri, M. Ramezani " Synthesis of MoSi2–TiC nanocomposite powder via mechanical alloying and subsequent annealing" Ceramics International 38, pp1353–1357, 2012.
11- J. Subrahmanyam, R. Mohan Rao " Cumbustion synthesis of MoSi2 ̶ TiC composite" Kanchanbagh, Heydarabad-500258, India, J.Mater. Res, Vol. 10,No.5, May 1995.
12- محمد حسین عنایتی،" مواد نانو ساختار"، انتشارات جهاد دانشگاهی واحد اصفهان، چاپ اول، پائیز سال 1386.
13- J.Subrahmanyam, M.Vijayakumar "Review Self-Propagating High-Temperature Synthesis" Journal Of Materials Science 27, pp6249-6273, 1992.
14- Zuhair A. Munir, U. Anselmi-Tamburini "Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion" Materials Science Reports 3, pp277-365, 1989.
15- A. Varma, J. P. Lebrat " Combustion synthesis of advanced materials" Chemical Engineering Science, Vol_ 47, No . 9-11, pp 2179-2194, 1992.
16- T. Grigorieva, M. Korchagin and N. Lyakhov "Combination of SHS and mechanochemical synthesis for nanopowder technologies" kona No.20, 2002.
17- F.Bernard, and E.Gaffet, Mechanical alloying in SHS research, Int. J. SHS, vol. 10, no. 2, pp. 109–132, 2001.
18- F. Bernard ,S. Paris and E. Gaffet "Mechanical activation as a new method for SHS" Advances in Science and Technology Vol. 45, pp. 979-988, 2006.
19- M. A. Korchagin, T. F. Grigor'eva, B. B. Bokhonov, M. R. Sharafutdinov, A. P. Barinova, and N. Z. Lyakhov "Solid-state combustion in mechanically activated SHS systems.I. Eect of activation time on process parameters and combustion product composition" Combustion, Explosion, and Shock Waves, Vol. 39, No. 1, pp. 43-50, 2003.
20- L. Takacs "Self-sustaining reactions induced by ball milling" Progress in Materials Science 47, pp355–414, 2002.
21- B. B. Khina "Effect of mechanical activation on SHS: physicochemical mechanism" International Journal of Self-Propagating High-Temperature Synthesis, Vol. 17, No. 4, pp211–217, 2008.
22- I. Barin, " Thermochemical data of pure substances", Third Edition, in collaboration with Gregor Platzki, 1995.
23- F.Bernard, E. Gaffet, "Mechanical alloying in SHS research", Int. J. SHS, vol. 10, no. 2, pp. 109–132, 2001.
24- C.R.Bowen and B. Derby " Self propagation high temperture synthesis of ceramic materials " British Ceramic Transations, vol.96 No.1, 1997.
25- http://chemsoc.velp.info/alloys.php http://www.crct.polymtl.ca/fact/documentation/SGTE/SGTE_Figs.htm.