Feasibilty Study of AZ31/Al2O3 Surface Nanocomposite Fabrication Via Friction Stir Processing
Subject Areas : journal of New Materialsمهدی Azizieh 1 , مهدی Boroujerdnia 2
1 - استادیار گروه مواد، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران.
2 - عضو هیئت علمی و مربی دانشگاه آزاد اسلامی، واحد اهواز، گروه مواد، اهواز، ایران
Keywords: Microstructure, friction stir processing, Magnesium Alloy AZ31, Nano Composites Hardness,
Abstract :
Friction stir processing (FSP) was used to fabricate AZ31/Al2O3 nanocomposites for surface applications. The effects of probe profile, rotational speed and the number of FSP passes on nanoparticle distribution and matrix microstructure were studied. Three tool designs, non-threaded, threaded and three flutes were used. The grain refinement of matrix and improved distribution of nanoparticles were obtained after each FSP pass. By increasing the rotational speed, as a result of greater heat input, grain size of the base alloy increased and simultaneously more shattering effect of rotation, cause a better nanoparticle distribution. In the non-threaded and three flutes FSP tool due to absence of threads some voids was observed. XRD results show that the reinforcement volume is low. Also, the texture of FSPed samples changes significantly. Some fluctuations were measured in the hardness values which are due to banded structure of the stir zone. With increase of rotational speed a smoother hardness results was produced.
1- C. I. Chang, Y. N. Wang, H. R. Pei, C. J. Lee, X. H. Du, and J. C. Huang, “Microstructure and Mechanical Properties of Nano-ZrO2 and Nano-SiO2 Particulate Reinforced AZ31-Mg Based Composites Fabricated byFriction Stir Processing”, Key Engineering Materials vol. 351,pp. 114-119, 2007.
2- م. عزیزیه، ع. صادقی و ا. ح. کوکبی،"بررسی ریزساختار و ویژگیهای مکانیکی اتصال اصطکاکی اغتشاشی آلومینیوم 1100 به AZ31"، مجله مواد نوین، دوره 2، شماره 6، ص1-11، زمستان 1390.
3. م. عزیزیه، ر. بهادرانی بیرگانی، س. جعفری، ز بلک و م. بروجردنیا، "تأثیر پارامترهای فرآیند اصطکاکی اغتشاشی روی ریزساختار و خواص مکانیکی منیزیم"، مجله مواد نوین، دوره 5، شماره 18، ص129-140، زمستان 1393.
4- W.M. Thomas, E.D.Nicholas, J.C.Needham, M.G.Church, P.Templesmith and C.J. Dawes, 1991, The Welding Institute, TWI, International, Patent Application no. pct/GB92/02203 and GB Patent Application no.912598.8.
5- R.S. Mishra, M.W.Mahoney, S.X.McFadden, N.A.Mara and A.K. Mukherjee, “High strain Rate Superplasticity in a Friction Stir Processed 7075 Al Alloy”, Scripta Materialia, 42, pp.163-168, 2000.
6- R.S.Mishra, Z.Y. Ma and I. Charit, “Friction Stir Processing: a Novel Technique for
Fabrication of Surface Composite”, Materials Science Engineering A, 341, pp. 276-281, 2003.
7- A.Dutta, I.Charit, L.B.Johannes and R.S.Mishra, “Deep Cup Forming by Super plastic punch Stretching of Friction Stir Processed 7075 Al alloy”, Materials Science and Engineering A, 395, pp.173-179, 2005.
8- M. Azizieh, and A.H. Kokabi, Effect of Rotational Speed and Probe Profile on Microstructure and Hardness of AZ31/Al2O3 Nano Composites Fabricated by Friction Stir Processing, Materials and Design, Vol. 32, pp. 2034-2041, 2011.
9- Park, C. S. Sato, Y. S. Kokawa, H. Effect of Micro-Texture on Fracture Location in Friction Stir Processingof Mg Alloy AZ61 During Tensile Test, Scripta Materialia, Vol 49, pp. 161-166, 2003.
10- B.M Darras, M.K.Khraisheh., F.K.Abu-Farha,and M.A. Omar, "Friction Stir Processing of Commercial AZ31 Magnesium Alloy", Journal of Materials Processing Technology, 191, pp. 77-81, 2007.