Effect of Addition (MoSi2) on the Resistivity and Mechanical Properties of Cu/MoSi2 Composite Produced by Accumulative Rroll Bonding (ARB) Process
Subject Areas : journal of New MaterialsA.H. Eslami 1 * , M.M. Moshksar 2 , S.M. Zebarjad 3
1 - دانشجوی کارشناسی ارشد مهندسی مکانیک دانشگاه آزاد اسلامی شیراز
2 - استاد مهندسی مکانیک دانشگاه آزاد واحد مرودشت.
3 - استاد دانشکده مهندسی مواد دانشگاه شیراز.
Keywords: Metal-matrix composites, Mechanical and resistivity properties, Accumulative roll bonding (ARB),
Abstract :
Techniques of severe plastic deformation have been of continual interest in the production of novel metallic microstructures. Among these, accumulative roll bonding has been extensively used to produce multi-layered composites. In the present study, a new manufacturing process for Cu/MoSi2-1vol% and 1.5vol% MoSi2 composites was developed by using Copper and nano sized MoSi2 particles as starting materials. After five ARB passes, it was showed the MoSi2 particles properly distributed in the copper matrix. With increasing strain during ARB passes strength and elongation of these composites increased. Structure and mechanical properties of these composites were studied within different stages of ARB process. Also, Electrical resistivity of the samples was measured by four point probe method
1 -علی یزدانی،"تولید کامپوزیت هـای نانوسـاختار آلومینیـوم-
کاربید بور به روش اتصال تجمعی نورد"،نشریه مواد نوین ، دوره
اول، شماره 3 ،ص 23-32 ،بهار1390 .
2- S. C. Tjong, and H. Chen, “Nanocrystalline
Materials and Coatings”, Materials Science
and Engineering, Vol. 45, pp. 1-88, 2004.
3- B.A. Movchan, and FD. Lemkey,”
Mechanical Properties of Fine-Crystalline
Two-Phasematerials”, Mater Sci Eng A;
224:136–45, 1997.
4- Y. S. Kim, S. H. Kang, and D. H. Shin,”
Effect of Rolling Direction on the
Microstructure and Mechanical Properties of
Accumulative Roll Bonding (ARB) Processed
Commercially Pure 1050 Aluminum Alloy”,
Materials Science Forum, Vols. 503-
504,pp.681-686, 2006.
5- N. Tsuji, Y. Ito, Y. Saito, and Y.
Minamino,”Strength and Ductility of UltraFine Grained Aluminum and Iron Produced by
ARB and Annealing”, Scripta Mater ; 47:893–
9, 2002.
6- K. M. Shorowordi, A. S. M. A. Haseeb, and
Al–B4C and Al–SiC Composites Worn under
Different Contact Pressures”, Wear, Vol. 261,
7- J. Mc. Keown, A. Misra, H. Kung, RG.
Hoagland, and M. Nastasi.” Microstructures
and Strength of Nano Scale Cu–Ag multilayers”, Scripta Mater; 46:593–8, 2002.
8- H. Sekine and R. Chen. “A Combined
Microstructure Strengthening Analysis of
SiCp/Al Metal Matrix Composites”,
Composites, Vol.26, pp183-8, 1995.
9- M. Alizadeh, “Comparison of
Nanostructured Al/B4C Composite Produced
by ARB and Al/B4C Composite produced by
RRB Process”, Materials Science and
Engineering A 528, 578–582, 2010.
10- Y. Estrin, RJ. Helming, SC. Baik, HS.
Kim, and HG. Brokmeier, ”Microstructure and
Texture Development in Copper and aluminum
Under ECAP”, Ultrafine Grained Materials III.
Warrendale, PA: TMS; 2004.
11- Huang X, Kamikawa N, and Hansen N.
Strengthening Mechanisms in Nanostructured
Aluminum. Mater Sci Eng A; 483:102–4,
2008.
12- L. Ghalandari and M. M. Moshksar, "High
Strength and High Conductive Cu/Ag
Multilayer Produced by ARB", Journal of
Alloys and Compounds, Vol. 506, pp. 172-
178, 2010.
_||_