Microstructure and Mechanical Properties of Plain Low Carbon Steel Processed by Integrated Extrusion and Equal Channel Angular Pressing (Ex-ECAP)
Subject Areas : journal of New Materialsمهدی Shaban Ghazani 1 * , اکبر Vajd 2 , بشیر Mosadegh 3
1 - دانشگاه آزاد اسلامی، واحد ایلخچی، باشگاه پژوهشگران جوان و نخبگان، ایلخچی، ایران.
2 - دانشگاه فنی و حرفه ای، آموزشکده شماره 2 تبریز، ایران.
3 - دانشگاه فنی و حرفه ای، آموزشکده شماره 2 تبریز، ایران.
Keywords: Bulk Nano-Structured Carbon Steel, Severe plastic deformation, X Ray Diffraction,
Abstract :
Among different strengthening mechanisms, grain refinement has been accepted as an effective and law cost method. So far, ferrite grains in plain low carbon steels were refined to grain sizes equal or less than one micrometer. Severe plastic deformation is one of the grain refinement methods which was successfully used and implemented in recent years. In the present research, severe plastic deformation was conducted using integrated extrusion equal channel angular pressing (ECAP) on a plain low carbon steel to refine ferrite grains and produce ultra-fine and Nano size grains. Results showed that integrated extrusion and equal channel angular pressing is an effective method that can be used for processing of Nano structured low carbon steels. In the present study a nanostructured low carbon steel was produced with crystallite sizes of 125 nanometer and yield strength tree times higher than initial coarse grained one.
1- R. Z. Valiev, and T. G. Langdon, “Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement”, Progress in Materials Science, Vol. 51, pp. 881–981. 2006.
2- T. G. Langdon, “The Processing of Ultrafine-Grained Materials Through the Application of Severe Plastic Deformation”, Journal Materials Science, Vol. 42, pp. 3388–3397. 2007.
3- R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock, “Overview of Processing, Microstructure and Mechanical Properties of Ultrafine Grained Bcc Steels”, Materials Science and Engineering A, Vol. 441, pp. 1-17. 2006.
4- P. J. Hurley and P. D. Hodgson, “Formation of Ultrafine Ferrite in Hot Rolled Strip: Potential Mechanism for Grain Refinement”, Materials Science and Engineering A, Vol. 302, pp. 206-211. 2007.
5- E. Essadiqi, and J. J. Jonas, “Microstructural Evolution During the Austenite-to-Ferrite Transformation from Deformed Austenite”, Metallurgical Transactions A, Vol. 19, pp. 417 -426. 1998.
6- رضایی،ا. نجفی زاده،ع. کرمانپور،ا. و معلمی، م."ارزیابی تحولات ریزساختاری فولاد AISI 201L در فرایند ترمومکانیکی پیشرفته"، نشریه مواد نوین، سال اول، شماره 2، ص 13-20، زمستان 1389.
7- R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, Michael J. Zehetbauer, and T. Yuntian Zhu, “Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation”, JOM, pp.33-39. 2006.
8- T. C. Lowe, R. Z. Valiev, “The Use of Severe Plastic Deformation Techniques in Grain Refinement”, JOM, pp. 64-77. 2004.
9- G. Sakaia, Z. Horitaa, and T.G. Langdon, “Grain Refinement and Superplasticity in an Aluminum Alloy Processed by High-Pressure Torsion”, Materials Science and Engineering A, Vol. 393, pp. 344–351. 2005.
10-Yu. Ivanisenko, R.Z. Valievb, and H. J. Fecht, “Grain Boundary Statistics in Nano-Structured Iron Produced by High Pressure Torsion”, Materials Science and Engineering A, Vol. 390, pp. 159–165. 2005.
11- M. Furukawa, Z. Horita, and T. G. Langdon, “Processing by Equal-Channel Angular Pressing: Applications to Grain Boundary Engineering”, Journal of Materials Science, Vol. 40, pp. 909– 917. 2005.
12- R. Song, D. Bonge, D. Rabbe, J. G. Speer, and D. K. Matlock, “Overview of Processing, Microstructure and Mechanical Properties of Ultrafine Grained Bcc Steels”, Materials Science and Engineering A, Vol. 444, pp.1-17. 2006.
13- Sh. Ranjbar Bahadori, K. Dehghani, and F. Bakhshandeh, “Microstructure, Texture and Mechanical Properties of Pure Copper Processed by ECAP and Subsequent Cold Rolling”, Materials Science and Engineering AVOL. 583, pp. 36-42. , 2013.
14- M. H. Paydar, M. Reihanian, E. Bagherpour, M. Sharifzadeh, M. Zarinejad, and T. A. Dean, “Consolidation of Al particles Through Forward Extrusion-Equal Channel Angular Pressing (FE-ECAP)”, Materials Letters, Vol. 62, pp. 3266–3268, 2008.
15- Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T. G. Langdon, “Principals of Equal Channel Angular Pressing for the Processing of Ultra-Fine Grained Materials”, Scripta Materialia, 1996, Vol. 35, pp. 143-146.
16- J. Gubiczaa, N. H. Namb, L. Balogha, R. J. Hellmigc, V. V. Stolyarovd, Y. Estrinc,and T. Ungára, ”Microstructure of Severely Deformed Metals Determined by X-ray Peak Profile Analysis”, Journal of Alloys and CompoundsVol. 378, pp. 248-252. , 2004.
17- J. Gubiczaa, L. Baloghb, R.J. Hellmigc, Y. Estrinc, and T. Ungár, “Dislocation Structure and Crystallite Size in Severely Deformed Copper by X-ray Peak Profile Analysis”, Materials Science and Engineering A, Vol. 400-401, pp. 334-338. 2005.
18- Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T. G. Langdon, “X-ray peak Profile Analysis of Crystallite Size Distribution and Dislocation Type and Density Eevolution in Nano-Structured Cu Obtained by Deformation at Liquid Nitrogen Temperature”, Materials Science and Engineering A, Vol. 402, pp. 158-162. 2005.
19- M. R. Movaghar Grabagh, S. Hossein Nedjad, H. Shirazi, M. Iranpour Mobarekeh, and M. Nili Ahmadabadi, “X-Ray Diffraction Peak Profile Analysis Aiming at Better Understanding of the Deformation Process and Deformed Structure of Martensitic Steel”, Thin Solid Films, Vol. 516, pp. 8117-8124. 2008.
20- X-ray Peak Profile Analysis of Crystallite Size Distribution and Dislocation Type and Density Evolution in Nano-Structured Cu Obtained by Deformation at Liquid Nitrogen Temperature, Materials Science and Engineering A 402 ,158-162. 2005.