The Effect of Silver Nanoparticles on AC Magnetic Susceptibility of High Temperature Y123 Superconductor
Subject Areas :
journal of New Materials
Gholamabbas Shams
1
,
Mehrdad Ebrahimnezhad
2
1 - Department of Physics, Shiraz Branch, Islamic Azad University, Shiraz, Iran
2 - Department of Physics, (college of science) Shiraz Branch, Islamic Azad University, Shiraz, Iran
Received: 2021-12-22
Accepted : 2022-02-25
Published : 2021-11-22
Keywords:
Silver Nanoparticles,
YBCO,
High Temperature Superconductors,
Magnetic Susceptibility,
Abstract :
In this study, the effect of of silver nanoparticles (Ag-NPs) inclusion on the AC magnetic susceptibility of high temperature YBa2Cu3O7-δ (Y123) + x wt% Ag (x=0.00, 0.06, 0.10 and 0.30) polycrystalline superconductors was investigated. The high temperature superconductors (Y123 + x wt% Ag) were fabricated by the solid state reaction method. XRD analysis of the samples showed superconducting orthorhombic phase with symmetry of Pmmm space group. Analysis of scanning electron microscopy (SEM) images related to the surface morphology of the samples showed that increasing silver nanoparticles dopant causes a decrease in granule size of the compounds. Real magnetic susceptibility exhibited intrinsic diamagnetic behavior and grain boundary connections and imaginary components of magnetic susceptibility showed energy loss due to flux penetration and vortex movement at the grain boundary. The critical temperature of 92 K was obtained for pure Y123 by real component of magnetic susceptibility and complete diamagnetism was observed in all samples (x=0.00, 0.06, 0.10 and 0.30). Silver decreased the critical temperature and increased the critical current density. Based on the obtained values of maximum Josephson current and Josephson intergranular energy coupling, it can be concluded that x=0.10 is the best weight percentage for Ag among the Y123 doped samples. Indeed, the greater inter-granular Josephson coupling energy causes, the superior of the trapping force and consequently produces the better critical current density.
References:
Wu, M. K., Ashburn, J. R., Torng, C., Hor, P. H., Meng, R. L., Gao, L., ... & Chu, A. (1987). Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Physical review letters, 58(9), 908. https://doi.org/10.1103/PhysRevLett.58.908
Hor, P. H., Gao, L., Meng, R. L., Huang, Z. J., Wang, Y. Q., Forster, K., ... & Torng, C. J. (1987). High-pressure study of the new Y-Ba-Cu-O superconducting compound system. Physical review letters, 58(9), 911. https://doi.org/10.1103/PhysRevLett.58.911
Shams, G., & Ranjbar, M. (2019). Conductivity Fluctuation and Some Parameters of High temperature Superconductor Polycrystalline Y 1 Ba 2 Cu 3 O 7− δ doped with Silver Nanoparticles. Brazilian Journal of Physics, 49(6), 808-819. https://doi.org/10.1007/s13538-019-00701-5
Cui, X. M., Liu, G. Q., Wang, J., Huang, Z. C., Zhao, Y. T., Tao, B. W., & Li, Y. R. (2007). Enhancement of critical current density of YBa2Cu3O7− δ thin films by nanoscale CeO2 pretreatment of substrate surfaces. Physica C: Superconductivity, 466(1-2), 1-4. https://doi.org/10.1016/j.physc.2007.04.223
Bartůněk, V. I. L. É. M., & Smrčková, O. L. G. A. (2010). Nanoparticles and superconductors. Ceramics-Silikáty, 54(2), 133-138.
Abd-Ghani, S. N., Wye, H. K., Kong, I., Abd-Shukor, R., & Kong, W. (2014). Enhanced Transport Critical Current Density of NiO Nano Particles Added YBCO Superconductors. In Advanced Materials Research (Vol. 895, pp. 105-108). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.895.105
Ghaedsharafi, N., Soltani, Z., & Shams, G. (2021). Tin-oxide nanoparticles doping impact in the polycrystalline superconducting Y3Ba5Cu8O18±𝛿 and Y1Ba2Cu3O7−𝛿 composits Applied Physics A, 127(2), 1-12. https://doi.org/10.1007/s00339-020-04222-w
Ghahramani, S., Shams, G., & Soltani, Z. (2021). Comparative Investigation of the Effect of Titanium Oxide Nanoparticles on Some Superconducting Parameters of Y3Ba5Cu8O18±δ and Y1Ba2Cu3O7-δ Composites. Journal of Electronic Materials, 1-14. https://doi.org/10.1007/s11664-021-09012-5
Görür, O., Terzioğlu, C., Varilci, A., & Altunbaş, M. (2005). Investigation of some physical properties of silver diffusion-doped YBa2Cu3O7−x superconductors. Superconductor Science and Technology, 18(9), 1233.
https://doi.org/10.1088/0953-2048/18/9/016
Mendoza, E., Puig, T., Varesi, E., Carrillo, A. E., Plain, J., & Obradors, X. (2000). Critical current enhancement in YBCO–Ag melt-textured composites: influence of microcrack density. Physica C: Superconductivity, 334(1-2), 7-14. https://doi.org/10.1016/S0921-4534(00)00098-8
Farbod, M., & Batvandi, M. R. (2011). Doping effect of Ag nanoparticles on critical current of YBa2Cu3O7− δ bulk superconductor. Physica C: Superconductivity, 471(3-4), 112-117. https://doi.org/10.1016/j.physc.2010.11.005
Diko, P., Fuchs, G., & Krabbes, G. (2001). Influence of silver addition on cracking in melt-grown YBCO. Physica C: Superconductivity, 363(1), 60-66. https://doi.org/10.1016/S0921-4534(01)00622-0
Joo, J., Kim, J. G., & Nah, W. (1998). Improvement of mechanical properties of YBCO-Ag composite superconductors made by mixing with metallic Ag powder and solution. Superconductor Science and Technology, 11(7), 645. https://doi.org/10.1088/0953-2048/11/7/006
Mohammad Ali Omodifard, Babak Hashemi, and Mohsen Babaiee, Effect of Neodymium and Yttrium oxides on the Structural and Electrochemical Properties of LiFePO4/C Composite as Cathode of lithium ion Batteries Synthesized by Solid State Method. Quarterly Journal of New Materials, 2021; 11 (42): 107–122. [in Persian]
Holzwarth, U., & Gibson, N. (2011). The Scherrer equation versus the'Debye-Scherrer equation'. Nature nanotechnology, 6(9), 534-534. https://doi.org/10.1038/nnano.2011.145
Shams, G., Mahmoodinezhad, A., & Ranjbar, M. (2018). Magnetic Levitation and Some Mechanism of YBa 2 Cu 3 O 7-δ Superconductor Doped with Nano-sized Al 2 O 3. Iranian Journal of Science and Technology, Transactions A: Science, 42(4), 2337-2343. https://doi.org/10.1007/s40995-017-0451-2
Ramli, A., Shaari, A. H., Baqiah, H., Kean, C. S., Kechik, M. M. A., & Talib, Z. A. (2016). Role of Nd2O3 nanoparticles addition on microstructural and superconducting properties of YBa2Cu3O7-δ ceramics. Journal of Rare Earths, 34(9), 895-900. https://doi.org/10.1016/S1002-0721(16)60112-6
Bhargava, A., Mackinnon, I. D., Yamashita, T., & Page, D. (1995). Bulk manufacture of YBCO powders by coprecipitation. Physica C: Superconductivity, 241(1-2), 53-62. https://doi.org/10.1016/0921-4534(94)00638-5
Falahati, S., Saeb, F., & Daadmehr, V. (2019). Structural and superconducting properties of YBa2Cu3-xMxOy (M= Ag, Al). Iranian Journal of Physics Research, 9(1), 43-47.
Wang, X. L., Horvat, J., Gu, G. D., Uprety, K. K., Liu, H. K., & Dou, S. X. (2000). Enhanced flux pinning by Fe point defects in Bi2Sr2Ca (Cu1− xFex) 2O8+ δ single crystals. Physica C: Superconductivity, 337(1-4), 221-224. https://doi.org/10.1016/S0921-4534(00)00105-2
Chaud, X., Prikhna, T., Savchuk, Y., Joulain, A., Haanappel, E., Diko, P., ... & Soliman, M. (2008). Improved magnetic trapped field in thin-wall YBCO single-domain samples by high-pressure oxygen annealing. Materials Science and Engineering: B, 151(1), 53-59. https://doi.org/10.1016/j.mseb.2008.02.006
Sangchaisri, S., Longhan, N., & Kruaehong, T. (2017). Investigation of Superconductivity and Crystal Structure of Y123, Y358 and Y3-8-11 Prepared by Solid State Reaction and Melt Process. J. Mater. Sci. Appl. Energy 6(3), 233. http://jmsae.snru.ac.th/wp-content/uploads/2017/12/11-V6-N3-9
Hannachi, E., Slimani, Y., Azzouz, F. B., & Ekicibil, A. H. M. E. T. (2018). Higher intra-granular and inter-granular performances of YBCO superconductor with TiO2 nano-sized particles addition. Ceramics International, 44(15), 18836-18843. https://doi.org/10.1016/j.ceramint.2018.07.118
Dew-Hughes, D. (2001). The critical current of superconductors: an historical review. Low temperature physics, 27(9), 713-722. https://doi.org/10.1063/1.1401180
Salamati, H., & Kameli, P. (2003). Effect of deoxygenation on the weak-link behavior of YBa2Cu3O7− δ superconductors. Solid state communications, 125(7-8), 407-411. https://doi.org/10.1016/S0038-1098(02)00809-8
Sarmago, R. V., & Singidas, B. G. (2004). Low field AC susceptibility of YBCO: the frequency and field dependence of intra-and intergrain coupling losses in the absence of vortices. Superconductor Science and Technology, 17(9), S578. https://doi.org/10.1088/0953-2048/17/9/023
Clem, J. R. (1988). Granular and superconducting-glass properties of the high-temperature superconductors. Physica C: Superconductivity, 153, 50-55. https://doi.org/10.1016/0921-4534(88)90491-1
Slimani, Y., Hannachi, E., Salem, M. B., Azzouz, F. B., & Salem, M. B. (2018). Comparative study of electrical transport and magnetic measurements of Y 3 Ba 5 Cu 8 O 18±δ and YBa 2 Cu 3 O 7− δ compounds: intragranular and intergranular superconducting properties. Applied Physics A, 124(2), 1-10. https://doi.org/10.1007/s00339-017-1547-4
Bean, C. P. (1962). Magnetization of hard superconductors. Physical review letters, 8(6), 250. https://doi.org/10.1103/PhysRevLett.8.250
Slimani, Y., Hannachi, E., Ekicibil, A. H. M. E. T., Almessiere, M. A., & Azzouz, F. B. (2019). Investigation of the impact of nano-sized wires and particles TiO2 on Y-123 superconductor performance. Journal of Alloys and Compounds, 781, 664-673. https://doi.org/10.1016/j.jallcom.2018.12.062
Awang Kechik, M. M. (2011). Improvement of critical current density in YBa2Cu3O7-δ films with nano-inclusions (Doctoral dissertation, University of Birmingham). http://etheses.bham.ac.uk/id/eprint/2930
Deguchi, K., Tanatar, M. A., Mao, Z., Ishiguro, T., & Maeno, Y. (2002). Superconducting double transition and the upper critical field limit of Sr 2 RuO 4 in parallel magnetic fields. Journal of the Physical Society of Japan, 71(12), 2839-2842. https://doi.org/10.1143/jpsj.71.2839
Halim, S. A., Mohamed, S. B., Azhan, H., & Khawaldeh, S. (1999). Effect of Ba and Zn doping in Bi2Pb0. 6Sr2Ca2Cu3Oδ superconductors using ac susceptibility measurements. Journal of materials science, 34(12), 2813-2819. https://doi.org/10.1023/A:1004670931858
_||_