Efficient Removal of Omeprazole from Water Samples by Utilizing of Carbon Nanotubes as Powerful nanoadsorbent and Comprising with Graphite: Kinetic and Thermodynamic studies
Subject Areas :
journal of New Materials
neda sadeghpor
1
,
Mehdi Vadi
2
,
Narges Bagheri
3
1 - PhD. graduated of Physical Firoozabad, Iran.Chemistry, Department of Chemistry, Islamic Azad University of Firoozabad, Physical Chemistry,
2 - Full-professor of Physical Chemistry, Department of Chemistry, Islamic Azad University of Firoozabad, Physical Chemistry, Firoozabad, Iran.
3 - Assistant Prof. of Physical Chemistry, Department of Chemistry, Islamic Azad University of Firoozabad, Physical Chemistry, Firoozabad, Iran.
Received: 2021-06-29
Accepted : 2022-03-05
Published : 2022-01-21
Keywords:
Thermodynamic,
Isotherm,
kinetic,
Adsorbent,
Omeprazole,
Abstract :
In this study, multi wall carbon nanotubes (MWCNTs) were utilized as powerful nanoadsorbants for efficient removal of Omeprazole (OMP) from water samples and comprised with graphite (GR). Effective parameters on removal efficiency including, pH, contact time and ionic strength were optimized by using one factor at a time optimizing method. Results showed that maximum removal of OMP was occurred at pH=5.0 after 30.0 min for both MWCNTs and GR. Kinetic models were employed to investigate the data corresponding to the adsorption of OMP on the surface of MWCNTs and Gr. Results revealed that the pseudo second-order model for adsorption of OMP on the surface of both MWCNTs and GR indicate the high ability of this model for representation of the data. Adsorption equilibrium studies indicated that the Langmuir isotherm efficiently represented both MWCNTs and GR adsorption data. Maximal adsorption capacity for 25.0 mg L-1 of OMP was calculated about 166.706 mg g-1 and 16.321 mg g-1 for MWCNTs and GR, respectively. The thermodynamic of adsorption process was investigated. Results exhibited that adsorption of OMP on the adsorbents is an exothermic process. As a result, this study can be used to remove ibuprofen from hospital and domestic wastewater.
References:
Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett. Elsevier; 2002;131:5–17.
Zhang Y, Geißen S-U, Gal C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere [Internet]. 2008;73:1151–61. Available from: http://www.sciencedirect.com/science/article/pii/S004565350800996X
Heberer T. Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J Hydrol [Internet]. 2002;266:175–89. Available from: http://www.sciencedirect.com/science/article/pii/S0022169402001658
NARVAEZ V. JF, JIMENEZ C. C. PHARMACEUTICAL PRODUCTS IN THE ENVIRONMENT: SOURCES, EFFECTS AND RISKS . Vitae . scieloco ; 2012. p. 93–108.
Daughton CG, Ternes TA. Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect [Internet]. Environmental Health Perspectives;
1999;107:907–38. Available from: https://doi.org/10.1289/ehp.99107s6907
Szabó RK. Decomposition of some pharmaceuticals by Advanced Oxidation Processes. Univ Szeged. 2010;
Masters RW. Pharmaceuticals and endocrine disruptors in rivers and on tap. J Contemp Water Res Educ. 120:1.
8- کافی موسوی، مائده میرزایی، روح اله. مروری بر روشهای حذف ترکیبات دارویی از پساب با تاکید بر روش جذب سطحی. گنبد کاووس [Internet]. 1398. p. 28–32. Available from: https://civilica.com/doc/962397
Ziylan A, Ince NH. The occurrence and fate of anti-inflammatory and analgesic pharmaceuticals in sewage and fresh water: Treatability by conventional and non-conventional processes. J Hazard Mater [Internet]. 2011;187:24–36. Available from: http://www.sciencedirect.com/science/article/pii/S0304389411000793
Moussavi G, Alahabadi A, Yaghmaeian K, Eskandari M. Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. Chem Eng J. Elsevier; 2013;217:119–28.
Lin S-H, Juang R-S. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review. J Environ Manage. Elsevier; 2009;90:1336–49.
Han R, Ding D, Xu Y, Zou W, Wang Y, Li Y, et al. Use of rice husk for the adsorption of congo red from aqueous solution in column mode. Bioresour Technol. 2008;99:2938–46.
Zare MA, Husain SW, Tehrani MS, Azar PA. Pentaazatetraethylene supported polyacrylamide (PAA-N5) as a novel adsorbent for the efficient removal of industrial dyes from aqueous solutions: adsorption isotherms and kinetics. Monatshefte für Chemie-Chemical Mon. Springer; 2017;148:191–7.
14- کریمی, معروفی, صفر, زارع. حذف سرب از آب های آلوده توسط کلاله ذرت به عنوان یک بیوجاذب ارزان قیمت. مجله تحقیقات سلامت در جامعه. مجله تحقیقات سلامت در جامعه; 2018;4:35–48.
15- کریمی ی. بازیافت فاضلاب با استفاده از مواد جاذب زیستی- شیمیایی [Internet]. دولتی - وزارت علوم، تحقیقات، و فناوری - دانشگاه بوعلی سینا; 1394. Available from: https://ganj.irandoc.ac.ir//#/search?keywords=بازیافت
16- زارع مع, عمادی م, ایرانپور م, بازرگان لاری ر. بررسی حذف رنگ متیلن بلو از آبهای آلوده توسط کاکل ذرت به عنوان یک بیو جاذب ارزانقیمت. فصلنامه علمی - پژوهشی مواد نوین [Internet]. مربی گروه شیمی، دانشگاه آزاد اسلامی واحد مرودشت، مرودشت، ایران.; 2014;4:81–98. Available from: http://jnm.miau.ac.ir/article_425.html
17- وفاخواه س, بحرالعلوم ما, بازرگان لاری ر, سعیدیخانی م. بررسی رفتار جذب یونهای مس از محلول پسابهای صنعتی توسط پودر چوب ذرت. فصلنامه علمی - پژوهشی مواد نوین [Internet]. دانشجوی کارشناسی ارشد مهندسی مواد، دانشکده مهندسی دانشگاه شیراز، شیراز، ایران.; 2013;4:35–46. Available from: http://jnm.miau.ac.ir/article_95.html
18- کریمی سی, معروفی ص, زارع مع. حذف سم پروپارژیت از محلولهای آبی با استفاده از پنتا آزا تترا اتیلن پلیآکریلآمید (PAA-N5) به عنوان یک جاذب جدید. فصلنامه علمی - پژوهشی مواد نوین [Internet]. گروه کشاورزی، مهندسی آب، دانشگاه ابو علی سینا، همدان، ایران.; 2020;10:109–24. Available from: http://jnm.miau.ac.ir/article_3905.html
Sadeghpour N, Vadi M, Bagheri N. UTILIZING CARBON NANOTUBES AS EFFICIENT NANOADSORBENT FOR PANTOPRAZOLE REMOVAL FROM AQUEOUS SAMPLES: KINETICS, ISOTHERM, AND THERMODYNAMIC STUDIES. J Chil Chem Soc. 2021;66:5324–31.
LAGERGREN, S. Zur theorie der sogenannten adsorption geloster stoffe. K Sven Vetenskapsakademiens Handl [Internet]. 1898 [cited 2018 Apr 16];24:1–39. Available from: http://ci.nii.ac.jp/naid/10027970486/en/
Ho Y-S, McKay G. Kinetic models for the sorption of dye from aqueous solution by wood. Process Saf Environ Prot. Elsevier; 1998;76:183–91.
Ho YS, McKay G. Batch lead (II) removal from aqueous solution by peat: equilibrium and kinetics. Trans IChemE. Citeseer; 1999;77:165–73.
Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. ACS Publications; 1918;40:1361–403.
Choy KKH, McKay G, Porter JF. Sorption of acid dyes from effluents using activated carbon. Resour Conserv Recycl. Elsevier; 1999;27:57–71.
Aharoni C, Ungarish M. Kinetics of activated chemisorption. Part 2.—Theoretical models. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases. Royal Society of Chemistry; 1977;73:456–64.
Metcalf E, Eddy E. Wastewater engineering: treatment and reuse, McGrawHill. Inc, New York. 2003;
Shokrollahi A, Alizadeh A, Malekhosseini Z, Ranjbar M. Removal of bromocresol green from aqueous solution via adsorption on Ziziphus nummularia as a new, natural, and low-cost adsorbent: kinetic and thermodynamic study of removal process. J Chem Eng Data. ACS Publications; 2011;56:3738–46.
Ghaedi M, Khajesharifi H, Yadkuri AH, Roosta M, Sahraei R, Daneshfar A. Cadmium hydroxide nanowire loaded on activated carbon as efficient adsorbent for removal of Bromocresol Green. Spectrochim Acta Part A Mol Biomol Spectrosc. Elsevier; 2012;86:62–8.
Shukla A, Zhang Y-H, Dubey P, Margrave JL, Shukla SS. The role of sawdust in the removal of unwanted materials from water. J Hazard Mater. Elsevier; 2002;95:137–52.
Özacar M, Şengil İA. Adsorption of metal complex dyes from aqueous solutions by pine sawdust. Bioresour Technol. Elsevier; 2005;96:791–5.
Garcia Sanchez A, Alvarez Ayuso E, Jimenez de Blas O. Sorption of heavy metals from industrial waste water by low-cost mineral silicates. Clay Miner. Mineralogical Society of Great Britain and Ireland; 1999;34:469–77.
Ji L, Chen W, Bi J, Zheng S, Xu Z, Zhu D, et al. Adsorption of tetracycline on single‐walled and multi‐walled carbon nanotubes as affected by aqueous solution chemistry. Environ Toxicol Chem. Wiley Online Library; 2010;29:2713–9.
Jafari M, Aghamiri SF. Evaluation of carbon nanotubes as solid-phase extraction sorbent for the removal of cephalexin from aqueous solution. Desalin Water Treat. Taylor & Francis; 2011;28:55–8.
Zhang L, Song X, Liu X, Yang L, Pan F, Lv J. Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chem Eng J. Elsevier; 2011;178:26–33.
Zhang L, Xu T, Liu X, Zhang Y, Jin H. Adsorption behavior of multi-walled carbon nanotubes for the removal of olaquindox from aqueous solutions. J Hazard Mater. Elsevier; 2011;197:389–96.
Sotelo JL, Rodríguez AR, Mateos MM, Hernández SD, Torrellas SA, Rodríguez JG. Adsorption of pharmaceutical compounds and an endocrine disruptor from aqueous solutions by carbon materials. J Environ Sci Heal Part B. Taylor & Francis; 2012;47:640–52.
Zha Y, Wang Y, Liu S, Liu S, Yang Y, Jiang H, et al. Adsorption characteristics of organics in the effluent of ultra-short SRT wastewater treatment by single-walled, multi-walled, and graphitized multi-walled carbon nanotubes. Sci Rep. Nature Publishing Group; 2018;8:1–12.
Ji L, Shao Y, Xu Z, Zheng S, Zhu D. Adsorption of monoaromatic compounds and pharmaceutical antibiotics on carbon nanotubes activated by KOH etching. Environ Sci Technol. ACS Publications; 2010;44:6429–36.
Ncibi MC, Sillanpää M. Optimizing the removal of pharmaceutical drugs Carbamazepine and Dorzolamide from aqueous solutions using mesoporous activated carbons and multi-walled carbon nanotubes. J Mol Liq. Elsevier; 2017;238:379–88.
_||_