Effect of Various Heat Treatment Conditions on Nickel Ferrite Nanoparticles and Investigating its Sensitivity to Formaldehyde
Subject Areas : journal of New MaterialsGholam Reza Aboutalebi 1 , Hamid Reza Ebrahimi 2 , Hosein Emami 3 , saeed Daneshmand 4 , Gholam Reza Amiri 5
1 - Department of Electrical and Computer Engineering, Majlesi Branch, Islamic Azad University, Isfahan, Iran
2 - Department of Chemistry, Fereydan Branch, Islamic Azad University, Isfahan, Iran
3 - Department of Electrical and Computer Engineering, Majlesi Branch, Islamic Azad University, Isfahan, Iran
4 - Department of Mechanics, Majlesi Branch, Islamic Azad University, Isfahan, Iran
5 - Department of Physics, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
Keywords: Heat Treatment, NiFe2O4 Nano Particles, Sensitivity, Temperature gradient, Formaldehyde Gas,
Abstract :
In this study, NiFe2O4 nanoparticles, with respecting two variables, were prepared through co-precipitation. These two variables are the temperature gradient reaching the temperature of the heat treatment of 500 °C at 10°C/sec, 35°C/sec and 60 °C/sec and the pure oxygen pressure as the heat treatment atmosphere for one hour, at 0.5 psi, 1 psi, and 1.5 psi. So, we found 9 samples, that the sample with the best sensitivity response to formaldehyde (sample with 10°C/sec heat treatment and 1 psi pure oxygen pressure) was characterized. X-ray diffraction (XRD), scanning electron microscopy (SEM), transition electron microscopy (TEM) and X-ray fluorescence (XRF) experiments were used to study the structure of these nanoparticles. X-ray diffraction experiment has verified formation of nickel ferrite phases. Furthermore, scanning electron microscopy and transition electron microscopy experiments confirmed that the ferrite was indeed a nano-structure. Finally, NiFe2O4 formula ratio was derived by X-ray fluorescence experiment. The sensitivity property of NiFe2O4 nanoparticles for formaldehyde gas detection was studied at 100 °C. For testing the sensitivity of nanosensors, a laboratory 5 liters system was used with temperature and humidity control. This system equipped with a temperature control heater for heating sensors. Relationship between gas concentration (from 20 ppm to 200 ppm) and resistance change of nano sensor with the best response to formaldehyde was investigated.
[1] H. R. Ebrahimi, M. Parish, G. R. Amiri, B. Bahraminejad, S. Fatahian Synthesis, characterization and gas sensitivity investigation of Ni0.5Zn0.5Fe2O4 nanoparticles, Journal of Magnetism and Magnetic Materials 414 (2016) 55–58.
[2] S. Maensiri, C. Masingboon, B. Boonchom, S. Seraphin, A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white, Scripta Materialia 56 (9) (2007) 797–800.
[3] H. Li, H.Wu, G. Xiao, Effects of synthetic conditions on particle size and magnetic properties of NiFe2O4, Powder Technology 198 (1) (2010) 157–166.
[4] D.S. Jung, Y.Ch. Kang, Effects of precursor types of Fe and Ni components on the properties of NiFe2O4 powders prepared by spray pyrolysis, Journal of Magnetism and Magnetic Materials 321 (6) (2009) 619–623.
[5] P. Deb, A. Basumallick, S. Das, Controlled synthesis of monodispersed superparamagnetic nickel ferrite nanoparticles, Solid State Communications 142 (12) (2007) 702–705.
[6] م. دوازده امامی، ر. معمارزاده، س. جوادپور، " بررسی نانوکامپوزیت لایه نازک PSS:PEDOT/SnO2 به عنوان حسگر گاز CO "، مجله مواد نوین، جلد 4، شماره 2، 66-55، زمستان 1392.
[7] ب. میرزایی، ع. ضرابی، م. رفیعی نیا، " طراحی و ساخت حسگر الکتروشیمیایی نانوکامپوزیتی گرافن-بتاسیکلودکسترین به منظور جذب اختصاصی داروهای کورکومین، کلروپرومازین و کلومپیرامین "، مجله مواد نوین، جلد 7، شماره 4، 123-113، تابستان 1396.
[8] H. Zhao, X. Sun, Ch. Mao, J. Du, Preparation and microwave-absorbing properties of NiFe2O4–polystyrene composites, Phys B Condens Matter 404 (1) (2009) 69–72.
[9] E. Hasmonay, J. Depeyrot, M.H. Sousa, F.A. Tourinho, J.C. Bacri, R. Perzynski, Optical properties of nickel ferrite ferrofluids, J Magn Magn Mater 201 (1–3) (1999) 195–199.
[10] H. Yin, H.P. Too, G.M. Chow, The effects of particle size and surface coating on the cytotoxicity of nickel ferrite, Biomaterials 26 (29) (2005) 5818–5826.
[11] A. Kale, S. Gubbala, R.D.K. Misra, Magnetic behavior of nanocrystalline nickel ferrite synthesized by the reverse micelle technique, Journal of Magnetism and Magnetic Materials 277 (3) (2004) 350–358.
[12] Hamid Reza Ebrahimi, Hasan Usefi, Hossein Emami and Gholam Reza Amiri “Synthesis, Characterization, and Sensing Performance Investigation of Copper Cadmium Ferrite Nanoparticles” IEEE TRANSACTIONS ON MAGNETICS, No.10, Vol.54, 2018.
[13] A.B. Gadkari, T.J. Shinde, P.N. Vasambekar, Ferrite gas sensors, IEEE Sensors Journal 11 (2011) 849–861.
[14] K. Mukherjee, S.B. Majumder, Synthesis process induced improvement on the gas sensing characteristics of nano-crystalline magnesium zinc ferrite particles, Sensors and Actuators B 162 (2012) 229–236.
[15] M. Afsharnia and S. M. Hamidi, “Characterization of Au/Fe/Au and Au/Co/Au magneto-plasmonic multilayers as an ethanol vapor sensor,” IEEE Trans. Magn., vol. 54 (2018) no. 1, pp. 1-7.
[16] N. S. Chen, X. J. Yang, E. S. Liu, and J. L. Huang, “Reducing gas-sensing properties of ferrite compounds MFe2O4 (M=Cu, Zn, Cd and Mg),” Sens. Actuators B, Chem.,vol. 66, pp. 178-180, 2000.
[17] Saeed Nosohiyan, Hamid Reza Ebrahimi, Amir Abbas Nourbakhsh, and Gholam Reza Amiri “Synthesis, Characterization, and Sensing Performance Investigation of Nickel Ferrite Nanoparticles for Ammonia Detection” IEEE TRANSACTIONS ON MAGNETICS, No.12, Vol.55, 2019.
[18] Adil Shafi Ganie, Sayfa Bano, Saima Sultana, Suhail Sabir, Mohammad Zain Khan,“ Ferrite Nanocomposite Based Electrochemical Sensor: Characterization, Voltammetric and Amperometric Studies for Electrocatalytic Detection of Formaldehyde in Aqueous Media” Electroanalysis An International Journal of Devoted to Electroanalysis, Sensor and Bioelectronic Devices, Volume 33, Issue 1, January 2021, Pages: 233-248.
_||_