A comparative study on the effect of electrodeposition current density on the grain size of Ni and Ni-W nanocrystalline coatings
Subject Areas : journal of New MaterialsBahar Bahrami-fard 1 , Ali Mohammad Rashidi 2
1 - Department of Materials and Textile Engineering, Razi University, Kermanshah, Iran
2 - Department of Materials and Textile Engineering, Razi University, Kermanshah, Iran
Keywords: Grain size, Electrodeposition current density, Nanocrystalline coating, Ni-W alloy coating,
Abstract :
The current density of electroplating is one of the vital synthesis variables for control microstructure and properties of electrodeposited nanocrystalline coatings. The mechanism of its effect on the grain size of single element deposits may be different from alloy coatings. In order to evaluate this hypothesis, nickel and nickel-tungsten were electrodeposited on the copper samples by direct current plating at several current densities ranging from 15 mA/cm2 to 90 mA/cm2. The microstructure of the both type prepared coatings were characterized by X-ray diffraction and scanning electron microscopy coupled with energy dispersive X-ray spectrometry. It is observed by increasing the current density, the weight percentage of W in Ni-W coating decreased. Also the grain size of Ni-W coating was remained about 5 nm, independent of current density up to 60 mA/cm2. But beyond 60 mA/cm2 the coating with coarser grains was obtained as current density increased. In comparison, a different behavior was observed for the nickel coating, so that the average grain size was decreased according to inverse power relation with increasing current density up to 60 mA/cm2 and its change was not noticeable at current density beyond 60 mA/cm2. These behavioral difference was explained by the competition between current density and amount of reduced tungsten ions effects on nucleation and growth processes. Also, by introducing a relative reduction current and its calculating using voltammetry data, the effect of current density on the amount of tungsten in Ni-W nanocrystalline coating was modeled.
1- م. کاظمی خالدی، ا.ع. آماده، ه. مرادی، "بررسی مقاومت به خوردگی رسوب الکتریکی نانوساختار نیکل-کبالت"، مجله مواد نوین، جلد1، شماره 1، ص 49-55، پائیز 1389.
2- س. ﭘﻮﻻدی ،م.ح. ﺷﺮﻳﻌﺖ، م.ا. ﺑﺤﺮاﻟﻌﻠﻮم، "ﻻﻳﻪ ﻧﺸﺎﻧﻲ آﻟﻴﺎژ Ni-Zn-P و ﻧﺎﻧﻮﻛﺎﻣﭙﻮزﻳﺖ Ni-Zn-P/nano SiC از ﻳﻚ ﺣﻤﺎم ﺟﺪﻳﺪ ﺑﻪ روش آﺑﻜﺎری اﻟﻜﺘﺮﻳﻜﻲ و ﺑﺮرﺳﻲ وﻳﮋﮔﻲﻫﺎی ﺧﻮردﮔﻲ آن"، مجله مواد نوین، جلد2، شماره 2، ص 41-27، زمستان 1390.
3- ص. ﻛﻔﺎش ﻳﺰدی، م.ا. ﺑﺤﺮاﻟﻌﻠﻮم، "ﺑﺮرﺳﻲ ﺗﺎﺛﻴﺮ داﻧﺴﻴﺘﻪ ﺟﺮﻳﺎن و ﻏﻠﻈﺖ ﻣﻮاد اﻓﺰودﻧﻲ ﺑﺮ ﺧﻮاص ﭘﻮﺷﺶ ﻧﺎﻧﻮ ﺳﺎﺧﺘﺎر روی ﺗﻮﻟﻴﺪ ﺷﺪه ﺑﻪ روش آﺑﻜﺎری اﻟﻜﺘﺮﻳﻜﻲ"، مجله مواد نوین، جلد3، شماره 1، ص 34-23، پائیز 1391.
4- س. ﻓﻀﻠﯽ، م.ا. ﺑﺤﺮاﻟﻌﻠﻮم، "تشکیل ﭘﻮﺷﺶ ﭘﺮم اﻟﻮی ﻧﺎﻧﻮ ﮐﺮﯾﺴﺘﺎﻟﯽ ﺑﻪ روش آﺑﮑﺎری اﻟﮑﺘﺮﯾﮑﯽ و ﺑﻬﯿﻨﻪ ﺳﺎزی ﺷﺮاﯾﻂ ﺳﻄﺤﯽ ﭘﻮﺷﺶ آﻟﯿﺎژی"، مجله مواد نوین، جلد6، شماره 3، ص 99-89، بهار 1395.
5- ز. ﻏﺎﻓﺮی، ش. ﺷﺮﻓﯽ، م.ا. ﺑﺤﺮاﻟﻌﻠﻮم، "تولید، ﻣﺸﺨﺼﻪ ﯾﺎﺑﯽ ﺳﺎﺧﺘﺎری و ارزﯾﺎﺑﯽ ﺧﻮاص ﻣﻐﻨﺎﻃﯿﺴﯽ ﭘﻮﺷﺶ ﻫﺎی ﻧﺎﻧﻮﺳﺎﺧﺘﺎر آﻫﻦ- ﮐﺒﺎﻟﺖ- ﺗﻨﮕﺴﺘﻦ ﺗﻬﯿﻪ ﺷﺪه ﺑﻪ روش آﺑﮑﺎری اﻟﮑﺘﺮﯾﮑﯽ"، مجله مواد نوین، جلد7، شماره 1، ص 44-31، پائیز 1395.
6- A.M. Rashidi, “A Galvanostatic Modeling for Preparation of Electrodeposited Nanocrystalline Coatings by Control of Current Density”, Journal of Materials Science and Technology, Vol. 28, No. 12, pp.1071–1076, 2012.
7- N. Tsyntsaru, H. Cesiulis, M. Donten, J. Sort, E. Pellicer, E.J. PodlahaMurphy, “Modern Trends in Tungsten Alloys Electrodeposition with Iron Group Metals”, Surface Engineering and Applied Electrochemistry, Vol. 48, No. 6, pp. 491-520, 2012.
8- S. Kabi, K. Raeissi, A. Saatchi, “Effect of polarization type on properties of Ni–W nanocrystalline electrodeposits”, Journal of Applied Electrochemistry, Vol. 39, pp. 1279–1285, 2009.
9- م. کیشان رودباری، ک. رئیسی، م.ع. گلعذار، "بررسی تاثیر عنصر آلیاژی تنگستن بر ساختار و خواص خوردگی پوششهای نانوساختار نیکل"، پنجمین همایش مشترک انجمن مهندسی متالورژی ایران و انجمن علمی ریخته گری ایران، دانشگاه صنعتی اصفهان، اصفهان، ایران، 3-4 آبان 1390.
10- M.A. Farzaneh, M.R. Zamanzad-Ghavide, K. Raeissi, M.A. Golozar, A. Saatchi, S. Kabi, “Effects of Co andWalloying elements on the electrodeposition aspects and properties of nanocrystalline Ni alloy coatings”, Applied Surface Science, Vol. 257, pp.5919–5926, 2011.
11- A. Królikowski, E. Plonska, A. Ostrowski, M. Donten, Z., Stojek, “Effects of compositional and structural features on corrosion behavior of nickel–tungsten alloys”, Journal of Solid State Electrochemistry, Vol. 13, pp.263–275, 2009.
12- H. Cesiulis, A. Baltutiene, M. Donten, M. Donten, Z. Stojek, “Increase in rate of electrodeposition and in Ni(II) concentration in the bath as a way to control grain size of amorphous/nanocrystalline Ni-W alloys”, Journal of Solid State Electrochemistry, Vol. 6, No. 4, pp. 237-244, 2002.
13- K. Hou, Y. Chang, S. Chang, C. Chang, “The heat treatment effect on the structure and mechanical properties of electrodeposited nano grain size Ni–W alloy coatings”, Thin Solid Films, Vol. 518, No. 24, pp.7535-7540, 2010.
14- A. Chianpairot, G. Lothongkum, C.A. Schuh, Y. Boonyongmaneerat, “Corrosion of nanocrystalline Ni–W alloys in alkaline and acidic 3.5 wt.% NaCl solutions”, Corrosion Science, Vol. 53, No. 3, pp.1066-1071, 2011.
15- P. Indyka, E. Beltowska-Lehman, L. Tarkowski, A. Bigos, E. Garcia-Lecina, “Structure characterization of nanocrystalline Ni–W alloys obtained by electrodeposition”, Journal of Alloys and Compounds, 590, pp.75-79, 2014.
16- L. Elias, A.C. Hegde, “Electrodeposition of laminar coating of Ni-W alloy and their corrosion behaviour”, Surface and Coatings Technology, Vol. 283, pp.61-69, 2015.
17- L. Elias, K. Scott, A.C. Hegde, “Electrolytic Synthesis and Characterization of Electrocatalytic Ni-W alloy”, Journal of Materials Engineering and Performance, Vol. 24, No. 11, pp. 4182-4191, 2015.
18- K.R. Sriraman, S.G.S. Raman, S.K. Seshadri, “Corrosion behaviour of electrodeposited nanocrystalline Ni–W and Ni–Fe–W alloys”, Materials Science and Engineering: A, Vol. 460–461, pp.39–45, 2007.
19- M. Benaicha, M. Allam, A. Dakhouche, M. Hamla, “Electrodeposition and Characterization of W-rich NiW Alloys from Citrate Electrolyte”, International Journal of Electrochemical Science, Vol. 11, pp. 7605 – 7620, 2016.
20- S.C. Tjong, H. Chen, “Nanocrystalline materials and coatings”, Materials Science & Engineering R, Vol. 45, No. 1-2, pp. 1-88, 2004.
21- B. Lv, Z. Hu, X. Wang, B. Xu, “Electrodeposition of nanocrystalline nickel assisted by flexible friction from an additive-free Watts bath”, Surface and Coatings Technology, Vol. 270, pp.123–131, 2015.
22- J. Panek, A. Budniok, “Production and electrochemical characterization of Ni-based composite coatings containing titanium, vanadium or molybdenum powders”, Surface and Coatings Technology, Vol. 201, No. 14, pp.6478-6483, 2007.
23- A.M. El-Sherik, U. Erb, “Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition”, Journal of Materials Science, Vol. 30, No. 22, pp.5743-5749, 1995.
24- E. Moti, M.H. Shariat, M.E. Bahrololoom, “Electrodeposition of nanocrystalline nickel by using rotating cylindrical electrodes”, Materials Chemistry and Physics, Vol. 111, No. 2-3, pp.469–474, 2008.
25- A.M. Rashidi, A. Amadeh, “The effect of saccharin addition and bath temperature on the grain size of nanocrystalline nickel coatings”, Surface and Coatings Technology, Vol. 204, No. 3, pp.353–358, 2009.
26- A.M. Rashidi, A. Amadeh, “The effect of current density on the grain size of electrodeposited nanocrystalline nickel coatings”, Surface and Coatings Technology, Vol. 202, No. 16, pp.3772–3776, 2008.
27- I. Mizushima, Ph.D Thesis, Technical University of Denmark, DTU, December 2006.
_||_