Experimental and finite element analysis of hot backward extrusion process of vanadium microalloyed steel preform for determining optimum preheat temperature
Subject Areas : journal of New Materialsmohammad hoseyn Azarmi 1 , mohammad bayat 2 , majid belbasi 3
1 - Department of mechanic engineering, Islamic Azad University, Emam khomeyni Yadegar branch, Tehran, Iran
2 - Department of mechanic engineering, Islamic Azad University, Emam khomeyni Yadegar branch, Tehran, Iran.
3 - Department of Materials,Engineering faculty, Islamic Azad University Central Tehran Branch , Tehran , Iran
Keywords: Finite element method, hot compression test, hot backward extrusion, preform, preheat temperature,
Abstract :
In this research, the effect of billet preheat temperature on the forming force value in hot backward extrusion process for a preform made of vanadium micro alloyed steel is studied. The plastic deformation behavior of steel using hot compression test at temperatures of 850℃ to 1250℃ under different strain rates is obtained. Then on the basis of these data, the hot backward extrusion process for the desired vessel in the same temperature range is simulated using finite element method. The results of the hot compression test and finite element, show that with increasing the preheat temperature from 850℃ to 1250℃, the maximum stress reduced from 200 MPa to 42 MPa and the required force for hot extrusion process is reduced from 247 to 43 Ton, respectively. In addition, the microstructure of the samples was examined by optical microscopy and no defect was observed in microstructure. Finally, according to result of calculated force in hot extrusion process on billet with 1200℃ preheat temperatures was carried out in the workshop and deformation of billet to perform was carried out without dimensional distortion wrinkles and crack.
[1] B. Eghbali, A. Abdollah-Zadeh, "Strain-induced transformation in a low carbon microalloyed steel during hot compression testing", J. Scrip. Mater. Vol. 54, pp. 1205-1209, 2006.
[2] S. M. Ebrahimi, "Investigation on the effects of preheat temperature on the microstructure of the backward extrusion of Al2124",InternationalAluminum Conference 2009 , 2009, Tehran, Iran.
[3] S. Enayati, S. A. A. A. Mousavi, S. M. Ebrahimi, M. Belbasi, M. S. Bayazidi, "Effects of temperature and effective strain on the flow behavior of Ti–6Al–4V", Journal of the Franklin Institute, Vol. 348, No. 10, pp. 2813-2822, 2011.
[4] F. Parvizian, T. Kayser, C. Hortig, B. Svendsen, "Thermomechanical modeling and simulation of aluminum alloy behavior during extrusion and cooling", Journal of materials processing technology, Vol. 209, No. 2, pp. 876-883, 2009.
[5] R. Mei, Y. Du, L. Bao, X. Zhang, B. Zhang, Z. Zhou, "Study on hot deformation behavior of 7085 aluminum alloy during backward extrusion process, Modelling and Simulation in Engineering", Vol. 2015, pp. 4, 2015.
]6 [مجید میسمی، بررسی رفتار کارگرم فولاد کم آلیاژ استحکام بالا میکروآلیاژ شده با وانادیم (H250)، دانشگاه تهران، تهران، 1389 .
]7 [محبوبه پویامنش، بیت اله اقبالی، غلامرضا ابراهیمی، محمد سعادتی، مقایسه رفتار تغییرشکل گرم دو نوع فولاد زنگ نزن دوفازی ریختگی، مجله مواد نوین، جلد 1شماره 2، صفحه 54-49 .
[8] N. Ogawa, M. Shiomi, K. Osakada, "Forming limit of magnesium alloy at elevated temperatures for precision forging", International Journal of Machine Tools and Manufacture, Vol. 42, No. 5, pp. 607-614, 2002.
[9] T. Philip, T. McCaffy, Metals handbook, ASM International Materials Park, OH, 1990.
[10] ASTM E209, Standard practice for compression tests of metallic materials at elevated temperatures with conventional or rapid heating rates and strain rates, 1981.
[11] T.L. Bergman, and F.P. Incropera, Introduction to heat transfer, John Wiley & Sons, 2011.
[12] W.F. Brown, C. Ho, H. Mindlin, Aerospace Structural Metals Handbook, Handbook operations, 1979.
[13] Y.-C. Lin, M.-S. Chen, J. Zhang, "Modeling of flow stress of 42CrMo steel under hot compression", Sci. Eng, Vol. A 499 pp. pp. 88-92, 2009.
[14] ASTM E 883, Standard Guide for Reflected–Light Photomicrography, 2002.
_||_