Fluorouracil functionalized Pt-doped carbon nanotube as drug delivery nanocarrier for anticarcinogenic drug: a B3LYP-D3 study
Subject Areas : Journal of NanoanalysisZahra Khalili 1 , Masoud Darvish Ganji 2 * , Maryam Mehdizadeh 3
1 - Department of Nanochemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
2 - Department of Nanochemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
3 - Department of Nanochemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
Keywords: Drug delivery, DFT calculations, Pt-doped CNT, Fluorouracil,
Abstract :
The interaction between drugs and nanostructured materials such as nanotubes is proving to be of fundamental interest for drug delivery and nanobiosensing. In the present work, the interaction of Fluorouracil, as an anticarcinogenic drug, with pristine CNT and Pt-doped CNT was investigated at the B3LYP-D3/TZVP level. Full optimization procedure has been carried out for all interacting systems to better understand the trends in binding nature of drug molecule interacting with the selected nanocarrier. We have evaluated the various stable configurations at both gas phase and aqueous solution for the considered complexes based on their interaction nature. Calculated adsorption energies indicated that Fluorouracil can form stable binding with Pt-CNT in aqueous media with adsorption energy of −1.12 eV which was found to be a chemisorption process. Charge analysis revealed that, upon binding of Fluorouracil to the nanocarrier, the overall charge on the host and guest systems changes and significant charges have been transferred from Fluorouracil to the substrates. Quantum molecular descriptors calculations also demonstrate the significant changes in the electronic properties of the nanostructures due to the Fluorouracil attachment. Interaction between Fluorouracil and pristine CNT however has been found to be typical for the physisorption with adsorption energy of about −0.405 eV. Our findings offer fundamental insights into the functionalization of the Pt-doped CNT and envisage the applicability of these nanostructured materials as a novel drug delivery vehicle for the transportation of anticarcinogenic drug within thetarget cells.
[1] M.F. Sorrentino, A.G. Truesdel, J. Cardiol. Cases., 6,20 (2012).
[2] D.B. Longley, D.P. Harkin, P.G. Johnston, Nat. Rev. Cancer., 3, 330 (2003).
[3] D.A. Cameron, H. Gabra, R.C. Leonard, Br, J. Cancer., 70, 120 (1994).
[4] K.T. Mehmood, K.Kiran, R.Rana , Pakistan J Sci., 62, 185 (2010).
[5] I.J.Cho, H.J.Chang, K.E Lee, H.S. Won, M.Y.Choi, E.M. Nam, Y.C. Mun, S.N.Lee, C.M Seong, J. Korean Med Sci., 24, 747 (2009).
[6] C. Kosmas, M.S. Kallistratos, P. Kopterides, J. Syrios, H. Skopelitis, N. Mylonakis, A. Karabelis, N. Tsavaris, J. Cancer Res Clin Oncol., 134, 75 (2008).
[7] R. Labianca , G. Beretta, M. Clerici, P. Frascini, G. Luporini, Tumori., 68, 505 (1982).
[8] K. Becker, J. Erckenbrecht, D. Haussinger, T. Frieling, Drugs., 57, 475 (1999).
[9] S. Rezkalla, R.A. Kloner, J. Ensley, M. al-Sarraf, S. Revels, A. Olivenstein, S. Bhasin,
S. Kerpel-Fronious, Z.G. Turi, J. Clin.Oncol., 7, 509 (1989).
[10] T. Stewart, N. Pavlakis, M. Ward, Intern.Med.J., 40, 303 (2010).
[11] G. Tiwari, R. Tiwari, B. Sriwastawa, L. Bhati, S. Pandey, P. Pandey, and S.K Bannerjee, Drug delivery systems: An updated review., 2(1), 11 (2012).
[12] R. Panchagnula, Indian.J.Pharmacol., 29, 140 (1997).
[13] P.R. Rao, P.V. Diwan, Drug.Dev. Indian.Pharm., 24, 327 (1998).
[14] P.R. Rao, P.V. Diwan, Pharm. Acta. Helv., 72, 47 (1997).
[15] M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science, 281, 2013 (1998).
[16] H. A. Mendonça Faria, A. A. Alencar de Queiroz, Science, C56, 260 (2015).
[17] J.R. Henstock, L.T. Canham, S.I. Anderson, Acta.Biomater. 11, 17 (2015).
[18] P. Vogt, P.De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G.L. Lay, Phys. Rev. Lett., 108, 155501 (2012).
[19] A. Bianco, K. Kostarelos, C. D. Partidos and M. Prato, Chem. Commun., 5, 571(2005).
[20] A. A. White, S. M. Best and I. A. Kinloch, Int. J. Appl. Ceramic Tech., 4, 1 (2007).
[21] R. V. Mundra, X. Wu, J. Sauer, J. S. Dordick and R. S. Kane, Curr. Opin. Biotechnol., 28, 25 (2014).
[22] C.-W. Lam, J. T. James, R. McCluskey and R. L. Hunter, Toxicol. Sci., 77, 126 (2004).
[23] J. Muller, F. Huaux, N. Moreau, P. Misson, J.-F. Heilier, M. Delos, M. Arras, A. Fonseca, J. B. Nagy and D. Lison, Toxicol. Appl. Pharmacol., 207, 221 (2005).
[24] M. Bottini, S. Bruckner, K. Nika, N. Bottini, S. Bellucci, A. Magrini, A. Bergamaschi and T. Mustelin, Toxicol. Lett., 160, 121 (2006).
[25] R. Chen, L. Zhang, C. Ge, M. T. Tseng, R. Bai, Y. Qu, C. Beer, H. Autrup and C. Chen, Chem. Res. Toxicol., 28, 440 (2015).
[26] M. J. Allen, V. C. Tung and R. B. Kaner, Chem. Rev., 110, 132 (2009).
[27] K. C. Kemp, H. Seema, M. Saleh, N. H. Le, K. Mahesh, V. Chandra and K. S. Kim, Nanoscale., 5, 3149 ( 2013).
[28] E. Chigo Anota, G.H. Cocoletzi, J. F. Sánchez Ramírez, J. Mol. Model., 19, 4991(2013).
[29] P. Mastrorilli, C.F. Nobile, G.P. Suranna, F.P. Fanizzi, G. Ciccarella, U. Englert, Q.
Li, Eur. J. Org. Chem., 6, 1234 (2004).
[30] J.F. Houlis, D.M. Roddick, J. Am. Chem. Soc., 120, 11020 (1998).
[31] A.W. Ehlers, S. Dapprich, S.F. Vyboishchikov, G. Frenking, Organometallics., 15,105
(1996).
[32] J. Puga, R. Patrini, K.M. Sanchez, B.C. Gates, Inorg. Chem., 30, 2479 (1991).
[33] R. Bender, P. Braunstein, J.-M. Jud, Y. Dusausoy, Inorg. Chem., 23, 4489 (1984).
[34] A.D. Lueking, R.T. Yang, Appl. Catal. A: Gen., 265, 259 (2004).
[35] A.D. Lueking, R.T. Yang, N.M. Baker, Langmuir., 20, 714 (2004).
[36] A.D. Becke, J. Chem. Phys., 98, 5648 (1993).
[37] C. Lee, W. Yang, R.G. Parr, Phys. Rev., B37, 785 (1988).
[38] F. Neese, Wiley Interdisciplinary Reviews, Comp. Mol. Sci., 2, 73 (2012).
[39] A. Schäfer, C. Huber and R. Ahlrichs, J. Chem. Phys., 100, 5829 (1994).
[40] D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chem. Acc., 77(2), 123 (1990).
[41] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem Phys., 132, 154104 (2010).
[42] A. D. Becke and E. R. Johnson, J. Chem Phys., 123, 154101 (2005).
[43] E. R. Johnson and A. D. Becke, J. Chem Phys., 124, 174104 ( 2006).
[44] K.A. Peterson, D. Figgen, E. Goll, H. Stoll, J. Chem. Phys., 119(21), 11113 (2003).
[45] S. F. Boys and F. d. Bernardi, Mol. Phys., 19, 553 (1970).
[46] L. Fallon III, Acta Crystallogr., B29, 2549 (1973).
[47] S. Esfandiarpoor, M. Fazli and M. Darvish Ganji, Sci. Reports, 7, 16561 (2017).
[48] M. Darvish Ganji, Sh. Mirzaei and Z. Dalirandeh, Sci. Reports, 7, 4669 (2017).
[49] M. Darvish Ganji and Razieh Dodangeh, Phys.Chem.Chem.Phys., 19 (2017) 12032.
[50] H. Alinezhad, M. Darvish Ganji, E. Soleymani, M. Tajbakhsha, F. Elmi, J. Mat. Chem B., 5, 6920 (2017).
[51] F. Moradi, M. Darvish Ganji and Y. Sarrafi, Phys Chem Chem Phys, 19 (2017) 8388.
[52] H. Tavassoli Larijani, M. Jahanshahi, M. Darvish Ganji, and M. H. Kiani, Phys Chem Chem Phys, 19 (2017) 1896.
[53] M. Rezvani, I. Ahmadnezhad, M. Darvish Ganji and M. Fotukian, J. Nanoanalysis, 3(3), 69 (2016).
[54] M. Darvish Ganji, F. Bonyasi, S. Tanreh, M. Rezvani, M. Hekmati, J. Nanoanalysis., 4(2): 159 (2017).
[55] M. Darvish Ganji, R. Alamalhoda and M. Mehdizadeh, Sci. Reports, 8, 11400 (2018).