Computational Design of Integrating Tetracycline Riboswitch into the 5’UTR of ERG11 Gene in Komagataella phaffii using CRISPR-Cas9 System
Subject Areas : Mycology
Sajjad Yazdanpanah
1
,
حسن محبت کار
2
*
,
Mohammad Barshan-tashnizi
3
,
Sareh Arjmand
4
1 -
2 - استاد-دانشگاه اصفهان
3 - Department of Life Science Engineering (LSE), Faculty of New Sciences & Technologies (FNST), University of Tehran, Tehran, Iran.
4 - Protein Research Center, Shahid Beheshti University, Tehran, Iran
Keywords: Recombinant Proteins, Komagataella phaffi, Ergosterol, Riboswitch, CRISPR-Cas9, Membrane Fluidity. ,
Abstract :
Background and Objectives: Komagataella phaffii (K. phaffii) is widely recognized as a top choice for producing recombinant proteins. However, its efficiency in secreting these proteins remains less than ideal. One limiting factor is the rigidity of the yeast cell membrane, which is largely influenced by ergosterol levels. The ERG11 gene is responsible for coding a crucial enzyme in the ergosterol biosynthesis pathway. Reducing the expression of ERG11 could increase membrane fluidity, potentially improving protein secretion. In this study, we aim to design a method to dynamically control the expression of ERG11 by integrating a tetracycline riboswitch (TcRs) into its 5′ untranslated region (5′UTR).
Materials and Methods: Computational techniques, including RNA secondary structure prediction and molecular docking, were utilized to identify optimal sites for riboswitch insertion. Additionally, a CRISPR/Cas9-based knock-in strategy was designed to enable precise integration of the TcRs upstream of ERG11 through homologous recombination.
Results: Based on computational analyses, four suitable insertion sites for TcRs were identified, and a DNA donor construct comprising TcRs with two homologous arms was designed for precise integration. Additionally, three single-guide RNAs (sgRNAs) were strategically designed to target sequences adjacent to the riboswitch insertion sites, thereby enhancing the efficiency and accuracy of knock-in via homologous recombination.
Conclusion: This work highlights effective insertion sites and provides a validated approach for introducing a regulatory riboswitch into the ERG11 locus. This method offers a potential means to modulate membrane fluidity dynamically, enhancing the secretion of recombinant proteins in K. phaffii.
References:
1. Juturu V, Wu JC. Heterologous protein expression in Pichia pastoris: latest research progress and applications. ChemBioChem. 2018;19.
2. Pan Y, Yang J, Wu J, Yang L, Fang H. Current advances of Pichia pastoris as cell factories for production of recombinant proteins. Front Microbiol. 2022;13:1059777.
3. Lv W, Cai M. Advancing recombinant protein expression in Komagataella phaffii: opportunities and challenges. FEMS Yeast Res. 2025;25.
4. Baumann K, Adelantado N, Lang C, Mattanovich D, Ferrer P. Protein trafficking, ergosterol biosynthesis and membrane physics impact recombinant protein secretion in Pichia pastoris. Microb Cell Fact. 2011;10.
5. Adelantado, N., Tarazona, P., Grillitsch, K., García-Ortega, X., Monforte, S., Valero, F., Feussner, I., Daum, G., & Ferrer, P. (2017). The effect of hypoxia on the lipidome of recombinant Pichia pastoris. Microb Cell Fact, 16, 86. https://doi.org/10.1186/s12934-017-0699-4
6. Foroudi, M. R., Khodavandi, A., Alizadeh, F., Mahmoudi, H., & Pishgar, E. Presence pattern of genes related to ergosterol biosynthesis in colonizing Candida albicans isolates from patients with multiple sclerosis. J Microbial World, 2019; 17(4) (In Persian).
7. Majdi M,Khazaei Koohpar Z,Nasrollahi Omran A. Investigation of mutations in hotspot regions of ERG11 gene in fluconazole-resistant isolates of Candida albicans in the west of Mazandaran. J Microbial World, 2018; 11(3) (In Persian).
8. Solat R, Rahimi P, Bakhshi Khaniki GR, Aghasadeghi MR, Vahabpour R, Shokri M. Expression of full length of HCV-E2 gene in yeast Pichia pastoris. J Microbial World. 2016;8(4) (In Persian).
9. Edwards BAL, Batey RT. Riboswitches: a common RNA regulatory element riboregulation in bacteria. Nat Educ. 2010;3(9).
10. Ge H, Marchisio MA. Aptamers, riboswitches and ribozymes in S. cerevisiae synthetic biology. Life. 2021;11.
11. Wittmann A, Suess B. Engineered riboswitches: expanding researchers’ toolbox with synthetic RNA regulators. FEBS Lett. 2012;586(15):2076–83.
12. Serganov A, Nudler E. A decade of riboswitches. Cell. 2013;152(1-2):17–24.
13. Bauer G, Suess B. Engineered riboswitches as novel tools in molecular biology. J Biotechnol. 2006 Jun 25;124(1):4–11.
14. Hanson S, Berthelot K, Fink B, McCarthy JEG, Suess B. Tetracycline-aptamer-mediated translational regulation in yeast. Mol Microbiol. 2003;49(6).
15. Suess B, Hanson S, Berens C, Fink B, Schroeder R, Hillen W. Conditional gene expression by controlling translation with tetracycline-binding aptamers. Nucleic Acids Res. 2003;31.
16. Weigand JE, Suess B. Tetracycline aptamer-controlled regulation of pre-mRNA splicing in yeast. Nucleic Acids Res. 2007;35(12).
17. Vieira IPV, Pimentel FSA, Coelho CM, De Marco JL, de Moraes LMP, Torres FAG. Use of an on/off tetracycline riboswitch to control protein production in Komagataella phaffii. AMB Express. 2023;13(1).
18. Wieder, N., D’Souza, E. N., Martin-Geary, A. C., Lassen, F. H., Talbot-Martin, J., Fernandes, M., Chothani, S. P., Rackham, O. J. L., Schafer, S., Aspden, J. L., MacArthur, D. G., Davies, R. W., & Whiffin, N.. Differences in 5’untranslated regions highlight the importance of translational regulation of dosage sensitive genes. Genome Biology, 2024; 25(1), 111.
19. Kelvin, D., & Suess, B.. Tapping the potential of synthetic riboswitches: reviewing the versatility of the tetracycline aptamer. RNA Biology, 2023; 20(1), 457.
20. Lorenz, R., Bernhart, S. H., Höner zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P. F., & Hofacker, I. L. . ViennaRNA Package 2.0. Algorithms for Molecular Biology, 2011; 6(1), 1–14.
21. Yan Y, Zhang D, Zhou P, Li B, Huang SY. HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res. 2017;45(W1).
22. Sarzynska J, Popenda M, Antczak M, Szachniuk M. RNA tertiary structure prediction using RNAComposer in CASP15. Proteins. 2023;91(12):1790–9.
23. Dominguez, C., Boelens, R. & Bonvin, A. M. J. J. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125, 1731–1737 (2003).
24. Concordet JP, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018;46(W1).
25. Gassler T, Heistinger L, Mattanovich D, Gasser B, Prielhofer R. CRISPR/Cas9-mediated homology-directed genome editing in Pichia pastoris. Methods Mol Biol. 2019.
26. Gunišová S, Valášek LS. Fail-safe mechanism of GCN4 translational control - uORF2 promotes reinitiation by analogous mechanism to uORF1 and thus secures its key role in GCN4 expression. Nucleic Acids Res. 2014;42(9):5880–93.
27. Lin Y, May GE, Kready H, Nazzaro L, Mao M, Spealman P, et al. Impacts of uORF codon identity and position on translation regulation. Nucleic Acids Res. 2019;47(17):9358–67.
28. Mengstie MA, Azezew MT, Dejenie TA, Teshome AA, Admasu FT, Teklemariam AB, et al. Recent advancements in reducing the off-target effect of CRISPR-Cas9 genome editing. Biologics. 2024;18:21.