Assessment of tomato genotypes resistance to Verticillium and Fusarium wilt diseases using molecular markers
Subject Areas : MycologyBahareh Morid 1 * , Shahab Haj Mansour 2
1 - Assistant Professor, Department of Plant Protection, Takestan branch, Islamic Azad University, Takestan, Iran.
2 - MS.c., Department of Plant Pathology, Science and Research branch, Islamic Azad University, Tehran, Iran.
Keywords: Molecular marker, Fusarium wilt, Verticillium wilt, I-2 gene, Ve-1 gene,
Abstract :
Background & Objectives: Fusarium and Verticillium wilts are two major fungal wilt diseases of tomato that have restricted its production worldwide. Culturing resistant tomato cultivars is the best way to control such diseases. Molecular markers linked to resistance genes would be useful for improving tomato breeding programs. In this study allele, specific markers and cleaved amplified polymorphic sequences (CAPS) markers were used to identify tomato genotypes that are resistant to Verticillium wilt and Fusarium wilt, respectively. Materials & Methods: This cross-sectional study was carried out on 32 tomato hybrids and commercial varieties provided from Falat company. DNA was extracted using cetyl-trimethyl ammonium bromide (CTAB) method. Then, polymerase chain reaction (PCR) was performed using molecular markers. To detect Fusarium wilt resistant varieties, PCR-RFLP was down using RsaI and FokI restriction enzymes. The results were confirmed by pathogenicity test. Results: Out of 35 tomato genotypes, 83% were resistant to Verticillium wilt, while 17% were sensitive. Also, 46% of genotypes were resistant to Fusarium wilt, while 54% were sensitive. Genotypes that showed resistance to Verticillium and Fusarium wilts possessed Ve1 and I-2 genes, respectively. Conclusion: Planting resistant genotypes in infected areas can control fungal diseases such as Verticillium and Fusarium wilts, without using any fungicides.
1. Bal U, Abak K. Haploidy in tomato (Lycopersicon esculentum Mill.): a critical review. J Euphytica. 2007; 158 (1-2): 1-9.
2. FAOSTAT Database, 2014.
3. Aminaee MM, Mansoori B, Ershad D. 2006. A study on Verticillium wilt of tomato in Kerman province. Proceeding of the 17th Iranian Plant Protection Congress. 2-5 Sep, Tehran, Iran. 163.
4. Staniazsek M, Kozik EU, Marczewski W. A CAPS marker TAO1902 diagnostic for the I-2 gene conferring resistance to Fusarium oxysporum f. sp. lycopersici race 2 in tomato. Plant Breeding. 2007; 126(3): 331-333.
5. Acciarri N, Rotino GL, Tamietti G, Valentino D, Voltattorni S, Sabatini E. Molecular markers for Ve1and Ve2 Verticillium resistance genes from Italian tomato germplasm. Plant Breeding. 2007; 126: 617-621.
6. Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R, Prufer D. Tomato Ve disease resistance genes encode cell surface-like receptors. PNAS. 2001; 98: 6511-6515.
7. Kawchuk LM, Lynch DR, Hachey J, Bains PS, Kulcsar F. Identification of a co-dominant amplified polymorphic DNA marker linked to the Verticillium wilt resistance gene in tomato. Theor Appl Genet. 1994; 89: 661-664.
8. Kawchuk LM, Hachey J, Lynch DR. Development of sequence characterized DNA markers linked to a dominant Verticillium wilt resistance gene in tomato. Genome. 1998; 41: 91-95.
9. Kuklev MY, Fesenko IA, Karlov GI. Development of a CAPS marker for the Verticillium wilt resistance in tomatoes. Russ J Genet. 2009; 45: 575-579.
10. Fradin EF, Zhang Z, Ayala JCJ, Castroverde CDM, Nazar RN, Robb J, Liu C, Thomma BPHJ. Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol. 2009; 150: 320-332.
11. Shi A, Vierling R, Grazzini R, Chen P, Caton H, Weng Y. Development of single nucleotide polymorphism (SNP) markers for selection of Ve gene of tomato Verticillium wilt resistance. Int Res J Plant Sci. 2010; 1(2): 34-42.
12. Labate JA, Baldo, AM. Tomato SNP discovery by EST mining and resequencing. Mol Breeding. 2005; 16: 343-349.
13. Yang W, Bai X, Kabelka E, Eaton C, Kamoun S, van der Knaap E, Francis D. Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Mol Breeding. 2004; 14: 21-34.
14. Foolad MR. Genome mapping and molecular breeding of tomato. Int J Plant Genomics. 2007; 2007: 64358.
15. Jones E, Chu W, Ayele M, Ho J, Bruggeman E, Yourstone K, Rafalski A, Smith OS, McMullen MD, Bezawada C, Warren J, Babayew J, Basu S, Smith S. Development of single nucleotide polymorphism (SNP) markers for use in commercial maize (Zea mays L.) germplasm. Mol Breeding. 2009; 24: 165-176.
16. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. Current protocols in molecular biology. John Wiley and Sons Inc. USA; 1994.
17. Naraghi L, Heydari A, Rezaee S, Razavi M, Jahanifar H, Mahmoodi Khaledi E. Biological control of tomato Verticillim wilt disease by Talaromyces flavus. J Plant Prot Res. 2010; 50 (3): 360-365.
18. Acciarri N, Sabatini E, Ciriaci T, Rotino LG, Valentino D, Tamietti G. The presence of genes for resistance against Verticillium dahliae in Italian tomato landraces. Eur J Hortic Sci. 2010; 75(1): 8-14.
19. Kim JT, Park IH, Lee HB, Hahm YI, Yu SH. Identification of Verticillium dahliae and Verticillium albo-atrum causing wilt of tomato in Korea. Plant Pathol J. 2001; 17(4): 222-226.
20. Ganal MW, Altmann T, Roder MS. SNP identification in crop plants. Curr Opin Plant Biol. 2009; 12: 211-217.
21. Collard BCY, Mackill DJ. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci. 2008; 363(1491): 557-572.
22. Wang Y, Tang X, Cheng Z, Mueller L, Giovannoni J, Tanksley SD. Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome. Genetics. 2006; 172: 2529-2540.
23. Shirasawa K, Asamizu E, Fukuoka H. An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theor Appl Genet. 2010; 121: 731-739.
24. Jimenez-Gomez JM, Maloof JN. Sequence diversity in three tomato species: SNPs, markers, and molecular evolution. BMC Plant Biol. 2009; 9: 85.
25. Hillier LW, Miller RD, Baird SE, Chinwalla A, Fulton LA, Koboldt DC, Waterston RH. Comparison of C. elegans and C. briggsae genome sequences reveals extensive conservation of chromosome organization and synteny. PLoS Biol. 2007; 5: 167.
26. Eberle MA, Ng PC, Kuhn K, Zhou L, Peiffer DA, Galver L, Viaud-Martinez KA, Lawley CT, Gunderson KL, Shen R, Murray SS. Power to detect risk alleles using genome-wide tag SNP panels. PLoS Genet. 2009; 3: 1827-1837.
27. Sedlacek T, Marik P, Chrpova J. Development of CAPS marker for identification of rym4 and rym5 alleles conferring resistance to the Barley Yellow Mosaic Virus complex in barley. Czech J Genet Plant. 2010; 46(4): 159-163.
28. Akkale C, Tanyolac B. Screening of resistance genes to Fusarium root rot and Fusarium wilt diseases in F3 family lines of tomato using RAPD and CAPS markers. Int J Nat Eng Sci. 2009; 3(3): 144 -148.
29. Popoola AR, Ercolano M R, Kaledzi PD, Ferriello F, Ganiyu SA, Dapaah HK, Ojo DK, Adegbite DA, Falana Y, Adedibu OB. Molecular and phenotypic screening of tomato genotypes for resistance to Fusarium wilt. Ghana J Hort. 2012; 10: 61-67.
30. El Mohtar CA, Atamian HS, Dagher RB, Abou-Jawdah Y, Salus MS, Maxwell DP.
Marker-assisted selection of tomato genotypes with the I-2 gene for resistance to Fusarium oxysporum f. sp. lycopersici race 2. Plant Dis. 2007; 91: 758-762.
31. Popoola AR, Ercolano MR, Feriello F, Kaledzi PD, Kwoseh C, Ganiyu SA, OjoDK, Adegbite DA, Falana Y. CAPS markers TAO1 and TG105 in the identification of I-2 resistant gene in Nigerian accessions of tomato, Solanum lycopersicum L. Niger J Biotech. 2014; 28: 43-51.
32. Hansona P, Lua S, Wanga J, Chena W, Kenyona L, Tana C, Teeb K, Wanga Y, Hsua Y, Schafleitnera R, Ledesmaa D, Yangaa R. Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato. Sci Hortic. 2016; 201: 346-354.
1. Bal U, Abak K. Haploidy in tomato (Lycopersicon esculentum Mill.): a critical review. J Euphytica. 2007; 158 (1-2): 1-9.
2. FAOSTAT Database, 2014.
3. Aminaee MM, Mansoori B, Ershad D. 2006. A study on Verticillium wilt of tomato in Kerman province. Proceeding of the 17th Iranian Plant Protection Congress. 2-5 Sep, Tehran, Iran. 163.
4. Staniazsek M, Kozik EU, Marczewski W. A CAPS marker TAO1902 diagnostic for the I-2 gene conferring resistance to Fusarium oxysporum f. sp. lycopersici race 2 in tomato. Plant Breeding. 2007; 126(3): 331-333.
5. Acciarri N, Rotino GL, Tamietti G, Valentino D, Voltattorni S, Sabatini E. Molecular markers for Ve1and Ve2 Verticillium resistance genes from Italian tomato germplasm. Plant Breeding. 2007; 126: 617-621.
6. Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R, Prufer D. Tomato Ve disease resistance genes encode cell surface-like receptors. PNAS. 2001; 98: 6511-6515.
7. Kawchuk LM, Lynch DR, Hachey J, Bains PS, Kulcsar F. Identification of a co-dominant amplified polymorphic DNA marker linked to the Verticillium wilt resistance gene in tomato. Theor Appl Genet. 1994; 89: 661-664.
8. Kawchuk LM, Hachey J, Lynch DR. Development of sequence characterized DNA markers linked to a dominant Verticillium wilt resistance gene in tomato. Genome. 1998; 41: 91-95.
9. Kuklev MY, Fesenko IA, Karlov GI. Development of a CAPS marker for the Verticillium wilt resistance in tomatoes. Russ J Genet. 2009; 45: 575-579.
10. Fradin EF, Zhang Z, Ayala JCJ, Castroverde CDM, Nazar RN, Robb J, Liu C, Thomma BPHJ. Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol. 2009; 150: 320-332.
11. Shi A, Vierling R, Grazzini R, Chen P, Caton H, Weng Y. Development of single nucleotide polymorphism (SNP) markers for selection of Ve gene of tomato Verticillium wilt resistance. Int Res J Plant Sci. 2010; 1(2): 34-42.
12. Labate JA, Baldo, AM. Tomato SNP discovery by EST mining and resequencing. Mol Breeding. 2005; 16: 343-349.
13. Yang W, Bai X, Kabelka E, Eaton C, Kamoun S, van der Knaap E, Francis D. Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Mol Breeding. 2004; 14: 21-34.
14. Foolad MR. Genome mapping and molecular breeding of tomato. Int J Plant Genomics. 2007; 2007: 64358.
15. Jones E, Chu W, Ayele M, Ho J, Bruggeman E, Yourstone K, Rafalski A, Smith OS, McMullen MD, Bezawada C, Warren J, Babayew J, Basu S, Smith S. Development of single nucleotide polymorphism (SNP) markers for use in commercial maize (Zea mays L.) germplasm. Mol Breeding. 2009; 24: 165-176.
16. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. Current protocols in molecular biology. John Wiley and Sons Inc. USA; 1994.
17. Naraghi L, Heydari A, Rezaee S, Razavi M, Jahanifar H, Mahmoodi Khaledi E. Biological control of tomato Verticillim wilt disease by Talaromyces flavus. J Plant Prot Res. 2010; 50 (3): 360-365.
18. Acciarri N, Sabatini E, Ciriaci T, Rotino LG, Valentino D, Tamietti G. The presence of genes for resistance against Verticillium dahliae in Italian tomato landraces. Eur J Hortic Sci. 2010; 75(1): 8-14.
19. Kim JT, Park IH, Lee HB, Hahm YI, Yu SH. Identification of Verticillium dahliae and Verticillium albo-atrum causing wilt of tomato in Korea. Plant Pathol J. 2001; 17(4): 222-226.
20. Ganal MW, Altmann T, Roder MS. SNP identification in crop plants. Curr Opin Plant Biol. 2009; 12: 211-217.
21. Collard BCY, Mackill DJ. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci. 2008; 363(1491): 557-572.
22. Wang Y, Tang X, Cheng Z, Mueller L, Giovannoni J, Tanksley SD. Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome. Genetics. 2006; 172: 2529-2540.
23. Shirasawa K, Asamizu E, Fukuoka H. An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theor Appl Genet. 2010; 121: 731-739.
24. Jimenez-Gomez JM, Maloof JN. Sequence diversity in three tomato species: SNPs, markers, and molecular evolution. BMC Plant Biol. 2009; 9: 85.
25. Hillier LW, Miller RD, Baird SE, Chinwalla A, Fulton LA, Koboldt DC, Waterston RH. Comparison of C. elegans and C. briggsae genome sequences reveals extensive conservation of chromosome organization and synteny. PLoS Biol. 2007; 5: 167.
26. Eberle MA, Ng PC, Kuhn K, Zhou L, Peiffer DA, Galver L, Viaud-Martinez KA, Lawley CT, Gunderson KL, Shen R, Murray SS. Power to detect risk alleles using genome-wide tag SNP panels. PLoS Genet. 2009; 3: 1827-1837.
27. Sedlacek T, Marik P, Chrpova J. Development of CAPS marker for identification of rym4 and rym5 alleles conferring resistance to the Barley Yellow Mosaic Virus complex in barley. Czech J Genet Plant. 2010; 46(4): 159-163.
28. Akkale C, Tanyolac B. Screening of resistance genes to Fusarium root rot and Fusarium wilt diseases in F3 family lines of tomato using RAPD and CAPS markers. Int J Nat Eng Sci. 2009; 3(3): 144 -148.
29. Popoola AR, Ercolano M R, Kaledzi PD, Ferriello F, Ganiyu SA, Dapaah HK, Ojo DK, Adegbite DA, Falana Y, Adedibu OB. Molecular and phenotypic screening of tomato genotypes for resistance to Fusarium wilt. Ghana J Hort. 2012; 10: 61-67.
30. El Mohtar CA, Atamian HS, Dagher RB, Abou-Jawdah Y, Salus MS, Maxwell DP.
Marker-assisted selection of tomato genotypes with the I-2 gene for resistance to Fusarium oxysporum f. sp. lycopersici race 2. Plant Dis. 2007; 91: 758-762.
31. Popoola AR, Ercolano MR, Feriello F, Kaledzi PD, Kwoseh C, Ganiyu SA, OjoDK, Adegbite DA, Falana Y. CAPS markers TAO1 and TG105 in the identification of I-2 resistant gene in Nigerian accessions of tomato, Solanum lycopersicum L. Niger J Biotech. 2014; 28: 43-51.
32. Hansona P, Lua S, Wanga J, Chena W, Kenyona L, Tana C, Teeb K, Wanga Y, Hsua Y, Schafleitnera R, Ledesmaa D, Yangaa R. Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato. Sci Hortic. 2016; 201: 346-354.