Synthesis analysis and antibacterial activity of selenium nanoparticles produced by Pseudomonas alcaligenes
Subject Areas : Industrial Microbiologymorahem ashengroph 1 , Seyedeh Roya Hosseini 2
1 - M.Sc., University of Kurdistan, Faculty of Sciences, Department of Biological Sciences, Sanandaj, Iran.
2 - Associate Professor, University of Kurdistan, Faculty of Sciences, Department of Biological Sciences, Sanandaj, Iran.
Keywords: Optimization, Antibacterial activity, P. alcaligenes, Nanoselenium, Resistance pattern,
Abstract :
Background & Objectives: Selenium nanoparticles have a wide range application in industry, biomedical and environmental fields due to their unique physical, chemical and photoelectrical properties. This study was aimed to use aquatic bacteria in bioreduction of selenite oxyanioninto elemental nano-selenium. Materials & Methods: Synthesized selenium nanoparticles were characterized by spectroscopic analysis and electromicrographs prepared by scanning electron microscopy (SEM). The efficacy of the antimicrobial activity of the synthesized selenium nanoparticles against some Gram-positive and Gram-negative human pathogenic bacteria was also investigated by the agar well diffusion test. Results: Sixteen selenite-resistant bacterial strains were isolated based on selective enrichment techniques in Tryptic Soy Agar (TSA) medium containing 5 mM selenite ion. Our results showed that Pseudomonas alcaligenes SR5 coastal seawater isolate can reduce selenite oxyanion into selenium nanoparticles. Furthermore, the results showed that extracellular selenium nanoparticles with an average size of 36 nm were formed in an optimum selenite concentration of 3 mM and an optimum initial biomass concentration of 15 g/l, following 96 h incubation at 25ᵒ C at (200 rpm under resting cell condition. Conclusion: The current study is the first report on extracellular synthesis of selenium nanoparticles using P. alcaligenes. The produced bio-nanoparticles showed a growth inhibitory effect against four tested pathogenic bacterial strains.
applications. RSC Adv. 2015; 112: 1-9.
2. Jain R, Gonzalez-Gil G, Singh V, van Hullebusch ED, Farges F, Lens PNL. Biogenic
selenium nanoparticles: production, characterization and challenges. In: Kumar A, Govil NJ
(eds) Nanobiotechnology. Studium Press LLC, USA. 2014; pp. 361-390.
3. Torres K, Campos V, Leon C, Rojas S, Guez-Llamazares S, Gonza’lez M, Smith C, MA M.
Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant
activity. J Nanoparticle Res. 2012; 14: 1236.
4. Shoeibi S, Mozdziak P, Golkar-Narenji A. Biogenesis of selenium nanoparticles using green
chemistry. Top Curr Chem. 2017; 375: 88.
5. Zonaro E, Lampis S, Turner RJ, Qazi SJS, Vallini G. Biogenic selenium and tellurium
nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial
planktonic cultures and biofilms. Front Microbiol. 2015; 6.
6. Fernández-Llamosas H, Castro L, Blázquez ML, Díaz E, Carmona M. Speeding up
bioproduction of selenium nanoparticles by using Vibrio natriegens as microbial factory. Sci
Rep. 2017; 7: 16046.
7. Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA. Biogenic selenium nanoparticles:
current status and future propects. Appl Microbiol Biotechnol. 2016; 100: 2555-2566.
8. Zhang W, Chen Z, Liu H, Zhang L, Gao P, Li D. Biosynthesis and structural characteristics of
selenium nanoparticles by Pseudomonas alcaliphila. Colloids Surf B: Biointerf. 2011; 88:
196-201.
9. Wang T, Yang L, Zhang B, Liu J. Extracellular biosynthesis and transformation of selenium
nanoparticles and application in H2O2 biosensor. Colloids Surf. B : Biointerf. 2020; 2010(80):
94-102.
10. Shoeibi S, Mashreghi M. Biosynthesis of selenium nanoparticles using Enterococcus faecalis and
evaluation of their antibacterial activities. J Trace Elem Med Biol. 2017; 39: 135-139.
11. Fernández-Llamosas H, Castro L, Blázquez ML, Díaz E, Carmona M. Speeding up
bioproduction of selenium nanoparticles by using Vibrio natriegens as microbial factory. Sci
Rep. 2017; 7: 16046.
12. Ashengroph M, Sahami-Soltani M. Antimicrobial effects of extracellular copper sulfide
nanoparticles synthesized from Bacillus licheniformis. J Microbial World. 2019; 11(3):
243-257 [In Persian].
13. Washington JA, Sutter VL. Dilution susceptibility test: agar and macro-broth dilution
procedures. In: Lennette EH, Balows A, Hausler JR, WJTruant J. editors. Manual of clinical
microbiology, 3rd ed. Washington, DC: American Society for Microbiology, 1980; p.
453-458.
14. Ashengroph M, Nahvi I, Zarkesh-Esfahani H, Momenbeik F. Novel strain of Bacillus
licheniformis SHL1 with potential converting ferulic acid into vanillic acid. Ann Microbiol.
2012; 62(2): 553-558.
15. Cowan ST, Steel KJ. Manual for the identification of medical bacteria, 3nd ed. London:
Cambridge University Press. 1993.
16. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for
phylogenetic study. J Bacteriol. 1991; 173: 697-703.
17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary
genetics analysis version 6.0. Mol Biol Evol. 2013; 30: 2725-2729
18. Ashengroph M, Nahvi I, Zarkesh- Esfahani H, Momenbeik F. Conversion of isoeugenol to
vanillin by Psychrobacter sp. strain CSW4. Appl Biochem Biotechnol. 2012; 166: 1-12.
19. Dhanjal S, Cameotra S. Aerobic biogenesis of selenium nanospheres by Bacillus cereus
isolated from coalmin soil. Microb Cell Factories. 2010; 9(52): 1-11.
20. Ruangpan L, Tendencia EA. Laboratory manual of standardized methods for antimicrobial
sensitivity tests for bacteria isolated from aquatic animals and environment. SEAFDEC,
Tigbauan, Iloilo; 2004.
21. Guthrie RD. Introduction to spectroscopy (Pavia, Donald; Lampman, Gary M, Kriz George S., Jr.)
J Chem Educ. 1979; 56: A323.
22. Thakkar KN, Mhatre SS, Rasesh Y, Parikh RY. Biological synthesis of metallic nanoparticles.
Nanomedicine NBM. 2010; 6: 257-262.
23. Srivastava N, Mukhopadhyay M. Biosynthesis and structural characterization of selenium
nanoparticles mediated by Zooglea ramigera. Powder Technol. 2013; 244: 26-29.
24. Baker S, Harini BP, Rakshith D, Satish S. Marine microbes: invisible nanofactories. J Pharm Res.
2013; 6: 383-388.
25. Manivasagan P, Nam SY, Oh J. Marine microorganisms as potential biofactories for synthesis of
metallic nanoparticles. Crit Rev Microbiol. 2016; 42(6): 1007-1019.
26. Cremonini E, Zonaro E, Donini M, Lampis S, Boaretti M, Dusi S, Melotti P, Lieo MM, Vallini G.
Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human
dendritic cells and fibroblasts. Microb Biotechnol. 2016; 9(6): 758-771.
_||_
applications. RSC Adv. 2015; 112: 1-9.
2. Jain R, Gonzalez-Gil G, Singh V, van Hullebusch ED, Farges F, Lens PNL. Biogenic
selenium nanoparticles: production, characterization and challenges. In: Kumar A, Govil NJ
(eds) Nanobiotechnology. Studium Press LLC, USA. 2014; pp. 361-390.
3. Torres K, Campos V, Leon C, Rojas S, Guez-Llamazares S, Gonza’lez M, Smith C, MA M.
Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant
activity. J Nanoparticle Res. 2012; 14: 1236.
4. Shoeibi S, Mozdziak P, Golkar-Narenji A. Biogenesis of selenium nanoparticles using green
chemistry. Top Curr Chem. 2017; 375: 88.
5. Zonaro E, Lampis S, Turner RJ, Qazi SJS, Vallini G. Biogenic selenium and tellurium
nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial
planktonic cultures and biofilms. Front Microbiol. 2015; 6.
6. Fernández-Llamosas H, Castro L, Blázquez ML, Díaz E, Carmona M. Speeding up
bioproduction of selenium nanoparticles by using Vibrio natriegens as microbial factory. Sci
Rep. 2017; 7: 16046.
7. Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA. Biogenic selenium nanoparticles:
current status and future propects. Appl Microbiol Biotechnol. 2016; 100: 2555-2566.
8. Zhang W, Chen Z, Liu H, Zhang L, Gao P, Li D. Biosynthesis and structural characteristics of
selenium nanoparticles by Pseudomonas alcaliphila. Colloids Surf B: Biointerf. 2011; 88:
196-201.
9. Wang T, Yang L, Zhang B, Liu J. Extracellular biosynthesis and transformation of selenium
nanoparticles and application in H2O2 biosensor. Colloids Surf. B : Biointerf. 2020; 2010(80):
94-102.
10. Shoeibi S, Mashreghi M. Biosynthesis of selenium nanoparticles using Enterococcus faecalis and
evaluation of their antibacterial activities. J Trace Elem Med Biol. 2017; 39: 135-139.
11. Fernández-Llamosas H, Castro L, Blázquez ML, Díaz E, Carmona M. Speeding up
bioproduction of selenium nanoparticles by using Vibrio natriegens as microbial factory. Sci
Rep. 2017; 7: 16046.
12. Ashengroph M, Sahami-Soltani M. Antimicrobial effects of extracellular copper sulfide
nanoparticles synthesized from Bacillus licheniformis. J Microbial World. 2019; 11(3):
243-257 [In Persian].
13. Washington JA, Sutter VL. Dilution susceptibility test: agar and macro-broth dilution
procedures. In: Lennette EH, Balows A, Hausler JR, WJTruant J. editors. Manual of clinical
microbiology, 3rd ed. Washington, DC: American Society for Microbiology, 1980; p.
453-458.
14. Ashengroph M, Nahvi I, Zarkesh-Esfahani H, Momenbeik F. Novel strain of Bacillus
licheniformis SHL1 with potential converting ferulic acid into vanillic acid. Ann Microbiol.
2012; 62(2): 553-558.
15. Cowan ST, Steel KJ. Manual for the identification of medical bacteria, 3nd ed. London:
Cambridge University Press. 1993.
16. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for
phylogenetic study. J Bacteriol. 1991; 173: 697-703.
17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary
genetics analysis version 6.0. Mol Biol Evol. 2013; 30: 2725-2729
18. Ashengroph M, Nahvi I, Zarkesh- Esfahani H, Momenbeik F. Conversion of isoeugenol to
vanillin by Psychrobacter sp. strain CSW4. Appl Biochem Biotechnol. 2012; 166: 1-12.
19. Dhanjal S, Cameotra S. Aerobic biogenesis of selenium nanospheres by Bacillus cereus
isolated from coalmin soil. Microb Cell Factories. 2010; 9(52): 1-11.
20. Ruangpan L, Tendencia EA. Laboratory manual of standardized methods for antimicrobial
sensitivity tests for bacteria isolated from aquatic animals and environment. SEAFDEC,
Tigbauan, Iloilo; 2004.
21. Guthrie RD. Introduction to spectroscopy (Pavia, Donald; Lampman, Gary M, Kriz George S., Jr.)
J Chem Educ. 1979; 56: A323.
22. Thakkar KN, Mhatre SS, Rasesh Y, Parikh RY. Biological synthesis of metallic nanoparticles.
Nanomedicine NBM. 2010; 6: 257-262.
23. Srivastava N, Mukhopadhyay M. Biosynthesis and structural characterization of selenium
nanoparticles mediated by Zooglea ramigera. Powder Technol. 2013; 244: 26-29.
24. Baker S, Harini BP, Rakshith D, Satish S. Marine microbes: invisible nanofactories. J Pharm Res.
2013; 6: 383-388.
25. Manivasagan P, Nam SY, Oh J. Marine microorganisms as potential biofactories for synthesis of
metallic nanoparticles. Crit Rev Microbiol. 2016; 42(6): 1007-1019.
26. Cremonini E, Zonaro E, Donini M, Lampis S, Boaretti M, Dusi S, Melotti P, Lieo MM, Vallini G.
Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human
dendritic cells and fibroblasts. Microb Biotechnol. 2016; 9(6): 758-771.