The combined effect of Nanopolyamidoamine-G7 dendrimer and cell-free supernatant of Lactobacillus plantarum on multidrug-resistant Campylobacter isolates from edible mushrooms distributed in Urmia, Iran
Subject Areas : Food Microbial Contamination
Mohammad Zardoshtian
1
,
Moslem Neyriz Naghadehi
2
*
,
mohammad reza asgharzadeh
3
1 - 1. Graduated of Veterinary Medicine, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.
2 -
3 - Department of Biology, Urmia Branch, Islamic Azad University, Urmia, Iran.
Keywords: Nanopolyamidoamine-G7 dendrimer, cell-free supernatant of Lactobacillus plantarum, multidrug-resistant Campylobacter strains, edible mushrooms,
Abstract :
The consumption of edible mushrooms is progressively increasing due to their high nutritional value. Campylobacter species are major causes of bacterial enteritis in humans and can easily contaminate edible mushrooms if hygienic practices are not followed during various stages of production. Moreover, the emergence of multidrug-resistant (MDR) bacterial strains is considered a significant public health issue. In the present study, the prevalence of Campylobacter species in edible mushrooms distributed in Urmia, the antibiotic resistance patterns of the isolates, and the combined effect of Nanopolyamidoamine-G7 (NPAMAM-G7) dendrimer and cell-free supernatant (CFS) of Lactobacillus plantarum on multidrug-resistant Campylobacter isolates were examined under laboratory conditions. In this study, out of 100 samples tested, 5 samples (5%) were contaminated with Campylobacter jejuni and 8 samples (8%) with Campylobacter coli. All isolates (100%) showed multidrug resistance. The dendrimer, in comparison with the cell-free supernatant, demonstrated a significantly higher antibacterial effect on Campylobacter isolates (p < 0.05). Furthermore, the combination of dendrimer and supernatant exhibited a synergistic effect (FIC index = 0.4) on Campylobacter coli isolates. The combination showed an additive effect (FIC index = 0.68) on Campylobacter jejuni isolates. Therefore, it can be concluded that all Campylobacter isolates from edible mushrooms in Urmia are multidrug-resistant, and the antibacterial effect of the dendrimer in the presence of the cell-free supernatant was enhanced on multidrug-resistant Campylobacter isolates under laboratory conditions.
Ahmadi, M., Rahmani, F., & Jahangiri, A. (2022). Synergistic Effects of Probiotics and Antimicrobial Agents Against Antibiotic-Resistant Campylobacter spp. Food Science & Nutrition, 10(8), 2171-2181.
Al-Hasan, M. M. I., & Al-Tamimi, W. (2021). Antibiotic resistance in Campylobacter spp. isolates from poultry and humans: a systematic review. Foodborne Pathogens and Disease, 18(7), 496-506.
Blaser, MJ. & Engberg, J. (2008). Clinical aspects of Campylobacter jejuni and Campylobacter coli infections, In: Nachamkin, I., Szymanski, C.M., & Blaser, M.J. (ed), Campylobacter. 3rd edition, American Society for Microbiology (ASM), Washington, DC, USA, pp. 99-122.
Calabretta, M.K., Kumar, A., McDermott, A.M., & Cai, C. (2007). Antibacterial activities of poly (amidoamine) dendrimers terminated with amino and poly (ethylene glycol) groups. Biomacromolecules, 8(6):1807–11.
Carroll, K.C., Butel, J.S., & Morse, S.A. (2016). Jawetz Melnick & Adelbergs Medical Microbiology. 27th edition, McGraw Hill Professional, New York, NY, USA, pp. 256-257.
Castonguay, A., Ladd, E., van de Ven, T.G.M., & Kakkar, A. (2012). Dendrimers as bactericides. New Journal of Chemistry, 36(2),199–204.
Cawthorne, C., Jubb, T., & Smith, R. (2020). Resistance of Campylobacter species isolated from different sources. Food Microbiology, 91, 103507.
Charles, S., Vasanthan, N., Kwon, D., Sekosan, G., & Ghosh, S. (2012). Surface modification of poly (amidoamine)(PAMAM) dendrimer as antimicrobial agents. Tetrahedron Lett. 53(49),6670–5.
CLSI. (2015). Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria. 3rd ed. CLSI guideline M45. Wayne, PA: Clinical and Laboratory Standards Institute.
Cotter, P.D., Ross, R.P., & Hill, C. (2013). Bacteriocins a viable alternative to antibiotics? Nat. Rev. Microbiol. 11(2), 95-105.
Danilova, T.A., Adzhieva, A.A., Mezentseva, M.V. Suetina, I. A., Danilina, G. A., Minko, A. G., et al. (2023). The Inhibitory Activity of Lactobacillus plantarum Supernatant against Enterobacteria, Campylobacter, and Tumor Cells. Bull Exp Biol Med, 176(1),64-67.
Danilova, TA. Danilina, GA., Adzhieva, AA. et al. (2017). Effects of Miramistin and Phosprenil on Microbial Biofilms. Bull. Exp. Biol. Med, 163(4), 439-442.
Dicks, LMT, Dreyer, L, Smith, C, van Staden, AD. (2018). A review: the fate of bacteriocins in the human gastro-intestinal tract: do they cross the gut-blood barrier? Front. Microbiol, 9, ID 2297.
Emami, A., Javidnia, K., Fathizadeh, H., & Rezaei, M. (2023). Survey of microbial contamination in edible mushrooms. Journal of Food Microbiology, 28(1), 45-54.
Enayat, K. Mansour, A. Nasrin, B. et al. (2012). Antibiotic resistance pattern in bacterial isolates obtained from frozen food samples of animal origin in Sanandaj and Ahvaz,” African Journal of Bacteriology Research, 4(3), 38–41.
Food and Drug Administration (FDA). Bacteriological Analytical Manual (BAM) Chapter 7: Campylobacter. U.S. Food and Drug administration. Available at: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-7-campylobacter. Accessed 08/03/2021.
Fernández, H., Ruiz, J., & Martínez, A. (2018). Antibiotic resistance patterns of Campylobacter spp. in poultry products. Journal of Food Safety, 38(3), e12428.
Ghosh, A., Ghosh, R., & Saha, M. (2019). Microbiological quality of edible mushrooms: A study in India. Journal of Mycology, 15(2), 85-92.
Hawker, CJ. and Frechet, JMJ. (1990). Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc., 112, 7638-7647.
Hermanson GT. (2013). Bioconjugate Techniques. 3rd ed. New York, NY: Elsevier Suanders; p. 351-86.
Heydarian Dehkordi, N., Tajik, H., Moradi, M., Koushesh, SA and Molaei, R. (2019). Antibacterial Interactions of Colloid Nanosilver with Eugenol and Food Ingredients. Journal of Food Protection, 82(10), 1783–1792.
Humphrey, T. O’Brien, S. Madsen, M. (2007). Campylobacters as zoonotic pathogens: a food production perspective, International Journal of Food Microbiology, 117(3), 237–257.
Kabir, M., Hasanuzzaman, M., & Rifat, N. (2022). Bacterial contamination of edible mushrooms in Bangladesh: A public health concern. Journal of Food Hygiene, 33(1), 14-20.
Kassem, I., Nayel, M., & El-Masry, M. (2021). Evaluation of antibiotic resistance patterns in Campylobacter jejuni and Campylobacter coli strains. Microbial Pathogenesis, 152, 104590.
Khan, I., Malik, M., & Iqbal, Z. (2021). Assessment of microbiological quality of edible mushrooms in Pakistan. Food Control, 105, 227-234.
Kumar, C. R., Saha, S., & Nair, P. (2021). Evaluation of the Effects of Polyamidoamine Dendrimers on the Antibacterial Activity of Probiotic Strains against Pathogenic Bacteria. Journal of Applied Microbiology, 131(5), 1740-1752.
Kumar R, Umar A, Kumar G, Nalwa HS. 2017. Antimicrobial properties of ZnO Nanomaterials: a review. Ceram Int, 43(5),3940–61.
Lee, W. J., Kim, H. S., & Park, J. H. (2021). Antibiotic resistance of Campylobacter strains in different animal sources. Journal of Veterinary Science, 22(4), e80.
Liu, YW, Liong, MT, Tsai, YC. (2018). New perspectives of Lactobcillus plantarum as a probiotic: the gut-heart-brain axis. J. Microbiol, 56(9),601-613.
Luangtongkum, T. Jeon, B. Han, J et al. (2009). Antibiotic resistance in Campylobacter: emergence, transmission and persistence. Future Microbiology, 4(2), 189–200.
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske, CG, et al. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology Infection. 18, 268-81.
Maktabi S, Ghorbanpoor M, Hossaini M, Motavalibashi A. (2019). Detection of multi-antibiotic resistant Campylobacter coli and Campylobacter jejuni in beef, mutton, chicken and water buffalo meat in Ahvaz, Iran. Veterinary Research Forum, 10 (1), 37-42.
Mardani, A., Kordbacheh, P., & Habibi, M. (2021). Bacterial contamination in edible mushrooms: A potential public health risk. Food Safety Journal, 12(3), 134-142.
McGowan, K., Fergal, M., & Brennan, M. (2020). Variation in Antibiotic Resistance of Campylobacter species from Poultry and Pig Production in Ireland. International Journal of Food Microbiology, 316, 108421.
Moradi, M., Mardani, K., Tajik, H. (2019). Characterization and application of postbiotics of Lactobacillus spp. on Listeria monocytogenes in vitro and in food models. LWT-Food Science and Technology, 111: 457-464.
Mukherjee S and Ramesh A. (2015). Bacteriocin-producing strains of Lactobacillus plantarum inhibit adhesion of Staphylococcus aureus to extracellular matrix: quantitative insight and implications in antibacterial therapy. J. Med. Microbiol. 64(12),1514-1526.
Murray, PR. Rosenthal, KS. Pfaller, MA. (2021). Medical Microbiology. 9th edition, Elsevier Health Sciences, Amsterdam, Netherlands, pp. 286-292.
Nguyen, H. T., Le, T. T., & Tran, L. T. (2020). Antibiotic resistance in Campylobacter species isolated from food products. Foodborne Pathogens and Disease, 17(6), 373-381.
Olasupo NA. 1996. Bacteriocins of Lactobacillus plantarum strains from fermented foods. Folia Microbiol. 41(2),130-136.
Olaimat, A. N., Ayyash, M. M., & Holley, R. A. (2019). Characteristics of antibiotic resistance in Campylobacter spp. isolated from food sources. Food Microbiology, 83, 256-265.
O'Neill, C. E., O’Sullivan, O. (2018). Antimicrobial activity of Lactobacillus plantarum against Campylobacter species. Journal of Applied Microbiology. 124(4), 1029-1037.
Park, Y., Lee, S., & Kim, H. (2021). Antagonistic Interactions in the Combination of Probiotics and Antimicrobial Agents. Microbial Pathogenesis, 153, 104574.
Parquette, J.R. (2001). Dendrimers II. Architecture, Nanostructure and Supramolecular Chemistry. J. Am. Chem. Soc., 123, 2701–2702.
Prabhurajeshwar, C and Chandrakanth, RK. (2017). Probiotic potential of lactobacilli with antagonistic activity against pathogenic strains: an in vitro validation for the production of inhibitory substances. Biomed. J. 40(5),270-283.
Rahimi E, Momtaz, H, Ameri M, Ghasemian-Safaei H, Ali-kasemi M. (2010). Prevalence and antimicrobial resistance of Campylobacter species isolated from chicken carcasses during processing in Iran. Poultry Science, 89,1015-20.
Rahimi E., Shakerian A., Kazemeini H. R., Goudarzi M. A. (2013). Antimicrobial resistance patterns of Campylobacter spp. isolated from raw chicken, Turkey, quail, partridge, ostrich, beef, sheep, goat and camel meat marketed in Shahrekord. Journal of Food Technology and Nutrition ,10(3),95–100.
Shafiei A., Rahimi E., Shakerian A. (2020). Prevalence, virulence and anti-microbial resistance in campylobacter spp. from routine slaughtered ruminants, as a concern of public health (case: Chaharmahal and Bakhtiari Province, Iran) Journal of Complementary Medicine Research, 11(1),302–315.
Shakerian A., Rokni N. D., Sharifzadeh A., Alagha S., Talebian R. (2005). Campylobacter jejuni as a potential pathogen in liver of broilers chickens in slaughtered & retail market broilers in Shahrekord, Iran. Iranian Journal of Food Science and Technology, 2(1),43–50.
Shakerian., A. (2016). Campylobacter spp. as a Potential Pathogen in the edible mushroom (Agaricus mushrooms). Journal of Food Microbiology, 3(1), 63-72 (In Persian).
Skarp, C. P., Hakkinen, M., & Rantala, L. (2016). Campylobacter contamination in food: A review. Food Control, 70, 45-58.
Smith, J.K., & Johnson, L.M. (2022). Probiotics in the control of Campylobacter: A review. Food Microbiology. 101, 123-130.
Smith, L. P., Martinez, M., & Taylor, D. (2023). The Role of Probiotics in the Management of Antibiotic Resistance in Campylobacter. Frontiers in Microbiology, 14, 103456.
Smith, J., Doe, A., Johnson, R. (2023). Comparative Antimicrobial Efficacy of PAMAM Dendrimers Against Campylobacter Specie. Journal of Antimicrobial Agents, 45(2), 123-134.
Smith, S. J. F., & Kauffman, M. (2020). Resistance to antimicrobials among Campylobacter spp. isolated from meat and poultry: An overview. Microbial Drug Resistance, 26(9), 1094-1102.
Sohail, I.A. Bhatti, A. Ashar, F.M. et al. 2020. Polyamidoamine (PAMAM) dendrimers synthesis, characterization and adsorptive removal of nickel ions from aqueous solution. J. Mater. Res. Technol., 9,498-506.
Stern NJ, Patton CM, Doyle MP, Park CE, McCardell BA. Campylobacter. In: Vanderzant C, Splittstoesser DF (eds). Compendium of Methods for the Microbiological Examination of Foods. (1992). 3rd ed. American Public Health Association, pp. 475-89.
Strydom SJ, Rose WE, Otto DP, Liebenberg W, De Villiers MM. 2013. Poly (amidoamine) dendrimer-mediated synthesis and stabilization of silver sulfonamide nanoparticles with increased antibacterial activity. Nanomedicine: nanotechnology, biology and medicine, 9(1),85–93.
Tan, H. A., Lim, Y. K., & Wong, H. Y. (2019). Molecular characterization of antibiotic-resistant Campylobacter spp. isolated from food animals. BMC Microbiology, 19(1), 42.
Te Dorsthorst, D. T. A., Verweij, P. E., Meletiadis, J., Bergervoet, M., Punt, N. C., Meis, J. F. G. M. and Mouton, J. W. (2002). In Vitro Interaction of Flucytosine Combined with Amphotericin B or Fluconazole against Thirty-Five Yeast Isolates Determined by both the Fractional Inhibitory Concentration Index and the Response Surface Approach. Antimicrobial agent and chemotherapy, 46(9), 2982-2989.
Thomas K. M., de Glanville W. A., Barker G. C., et al. (2020). Prevalence of Campylobacter and Salmonella in African food animals and meat: a systematic review and meta-analysis. International Journal of Food Microbiology, 315,108382.
Valverde M. E., Hernández-Pérez T., Paredes-López O. (2015). mushrooms: improving human health and promoting quality life. International Journal of Microbiology, 2015,14.
Wang B, Navath RS, Menjoge AR, et al. (2010). Inhibition of bacterial growth and intramniotic infection in a guinea pig model of chorioamnionitis using PAMAM dendrimers. Int J Pharm. 395(1), 298–308.
Wang, D., Liu, Y., Li, X et al. (2023). Unraveling the antibacterial mechanism of Lactiplantibacillus plantarum MY2 cell-free supernatants against Aeromonas hydrophila ST3 and potential application in raw tuna. Food Control, 145, 109512. Wieczorek, K and Osek, j. (2013). Antimicrobial resistance mechanisms among Campylobacter. Biomed Research International, 2013, 12.
Xue X, Chen X, Mao X, et al. (2013). Amino-terminated generation 2 poly (amidoamine) dendrimer as a potential broad-spectrum, nonresistance-inducing antibacterial agent. AAPS J, 15(1),132–42.
Yen, C.-H. Lien, H.-L. et al. (2017). Adsorption of precious metals in water by dendrimer modified magnetic nanoparticles. J. Hazard. Mater, 322, 215-222.
Zhang, Y., Wang, X., & Ren, M. (2021). Resistance of Campylobacter jejuni and Campylobacter coli to antibiotics in food sources. Journal of Antimicrobial Chemotherapy, 76(5), 1427-1432.
Zhang, Z. Y. M., Tan, T. Y. T., & Kong, K. Y. (2021). Campylobacter antibiotic resistance: a global perspective. Journal of Applied Microbiology, 131(1), 1-13.