Synthesis and Characterization of Linear/Nonlinear Optical Properties of GO, RGO, RGO-ZNO, and RGO-ZNO-Fe2O4
Subject Areas : Optical PropertiesMohsen EbrahimiNaghani 1 , Mina Neghabi 2 * , Mehdi Zadsar 3 , Hossein Abbastabar Ahangar 4
1 - Department of Physics, Faculty of Physics, Islamic Azad University, Najaf Abad Branch, Najaf Abad, Isfahan, Iran
2 - Department of Physics, Faculty of Physics, Islamic Azad University, Najaf Abad Branch, Najaf Abad, Isfahan, Iran
3 - Department of Physics, Faculty of Physics, Islamic Azad University, Najaf Abad Branch, Najaf Abad, Isfahan, Iran
4 - Department of Chemistry, Najafabad Branch, Islamic Azad University, Najafabad, Iran
Keywords: nanocomposite, Reduced graphene oxide, Linear and nonlinear optical properties, Z-Scan,
Abstract :
In this paper, we aimed to investigate the linear and nonlinear optical properties of reduced graphene oxide-based metal oxide nanocomposite in comparison with reduced graphene oxide (RGO) and the effect of the process of reducing the oxygen groups of graphene oxide on the change of the nonlinear absorption coefficient of the reduced graphene oxide- zinc oxide (RGO-ZnO) and reduced graphene oxide-zinc oxide-iron oxide (RGO-ZnO-Fe2O4) sample. For this purpose, RGO, RGO-ZnO, and RGO–ZnO-Fe2O4 were synthesized using Hummers and hydrothermal methods, respectively, and then were analyzed using Fourier transform infrared (FT-IR), Ultraviolet-visible absorption (UV-Vis), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) were characterized. The XRD and FTIR analysis successfully synthesized RGO-ZnO and RGO-ZnO-Fe2O4 nanocomposites. Also, FT-IR spectroscopy indicated that absorption bands at 3340 cm-1, 1630 cm-1, 1730 cm-1, and 480 cm-1 are related to O-H, C=C, C=O, and Zn-O stretching vibrations, subsequently. The direct energy gap of GO, RGO, RGO-ZnO, and RGO-ZnO-Fe2O4 from UV-Vis spectra was reported to be 3.36, 3.18, 3.25, and 2.7eV, respectively. In addition, the third-order nonlinear optical properties (the nonlinear absorption coefficient) of all samples were investigated using the Z-scan technique with Nd: YAG laser (532 nm, 70 mW), and it was observed that the third-order nonlinear optical properties were increased from 8.3×10-4cm/W for RGO to 5.6×10-3 cm/W for RGO-ZnO-Fe2O4.
[1] T. Kavitha, A.I. Gopalan, K.-P. Lee, S.-Y. Park, Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids, Carbon, 50(2012) 2994-3000.
[2] V. Gupta, T.A. Saleh, Syntheses of carbon nanotube-metal oxides composites; adsorption and photo-degradation, Carbon Nanotubes-From Research to Applications, 17(2011) 295-312.
[3] C. Peng, Y. Xiong, Z. Liu, F. Zhang, E. Ou, J. Qian, et al., Bulk functionalization of graphene using diazonium compounds and amide reaction, Applied surface science, 280(2013) 914-9.
[4] H. Miyaji, Y. Kanemoto, A. Hamamoto, K. Shitomi, E. Nishida, A. Kato, et al., Sustained antibacterial coating with graphene oxide ultrathin film combined with cationic surface-active agents in a wet environment, Scientific reports, 12(2022) 1-13.
[5] C. Li, Z. Cheng, J. Gao, Q. Han, M. Ye, J. Zhang, et al., Oxidation degree of graphene reflected by morphology-tailored zno growth, Carbon, 107(2016) 583-92.
[6] T. Giannakopoulou, N. Todorova, A. Erotokritaki, N. Plakantonaki, A. Tsetsekou, C. Trapalis, Electrochemically deposited graphene oxide thin film supercapacitors: Comparing liquid and solid electrolytes, Applied Surface Science, 528(2020) 146801.
[7] R. Jain, A. Sinha, Graphene-zinc oxide nanorods nanocomposite based sensor for voltammetric quantification of tizanidine in solubilized system, Applied Surface Science, 369(2016) 151-8.
[8] H. Wördenweber, S. Karthäuser, A. Grundmann, Z. Wang, S. Aussen, H. Kalisch, et al., Atomically resolved electronic properties in single layer graphene on α-Al2O3 (0001) by chemical vapor deposition, Scientific Reports, 12(2022) 18743.
[9] N. Hameed, L.F. Dumée, F.-M. Allioux, M. Reghat, J.S. Church, M. Naebe, et al., Graphene based room temperature flexible nanocomposites from permanently cross-linked networks, Scientific Reports, 8(2018) 1-8.
[10] Y. Li, G. Zhu, K. Zhou, P. Meng, G. Wang, Evaluation of graphene/crosslinked polyethylene for potential high voltage direct current cable insulation applications, Scientific Reports, 11(2021) 1-8.
[11] K. Sodeinde, S. Olusanya, O. Lawal, M. Sriariyanun, A. Adediran, Enhanced adsorptional-photocatalytic degradation of chloramphenicol by reduced graphene oxide-zinc oxide nanocomposite, Scientific Reports, 12(2022) 1-13.
[12] C.S. Rout, A. Govindaraj, Graphene-based electrochemical supercapacitors.
[13] B.-M. Kim, H.-Y. Kim, S.-W. Hong, W.H. Choi, Y.-W. Ju, J. Shin, Structurally distorted perovskite La0. 8Sr0. 2Mn0. 5Co0. 5O3-δ by graphene nanoplatelet and their composite for supercapacitors with enhanced stability, Scientific reports, 12(2022) 1-8.
[14] K.-H. Choi, H.-J. Nam, J.-A. Jeong, S.-W. Cho, H.-K. Kim, J.-W. Kang, et al., Highly flexible and transparent In Zn Sn O x∕ Ag∕ In Zn Sn O x multilayer electrode for flexible organic light emitting diodes, Applied Physics Letters, 92(2008) 194.
[15] S.H. Raad, Z. Atlasbaf, Solar cell design using graphene-based hollow nano-pillars, Scientific Reports, 11(2021) 1-8.
[16] J.-K. Chang, Y.-Y. Huang, D.-L. Lin, J.-I. Tau, T.-H. Chen, M.-H. Chen, Solution-processed, semitransparent organic photovoltaics integrated with solution-doped graphene electrodes, Scientific Reports, 10(2020) 1-12.
[17] G. Williams, ACS Nano, 2008, 2, 1487;(e) B. Seger and PV Kamat, J Phys Chem C, 113(2009) 7990.
[18] S. Srikanth, S. Dudala, U. Jayapiriya, J.M. Mohan, S. Raut, S.K. Dubey, et al., Droplet-based lab-on-chip platform integrated with laser ablated graphene heaters to synthesize gold nanoparticles for electrochemical sensing and fuel cell applications, Scientific reports, 11(2021) 1-12.
[19] A.H. Mashhadzadeh, M.G. Ahangari, A. Dadrasi, M. Fathalian, Theoretical studies on the mechanical and electronic properties of 2D and 3D structures of beryllium-oxide graphene and graphene nanobud, Applied Surface Science, 476(2019) 36-48.
[20] Y.-S. Chang, F.-K. Chen, D.-C. Tsai, B.-H. Kuo, F.-S. Shieu, N-doped reduced graphene oxide for room-temperature NO gas sensors, Scientific Reports, 11(2021) 1-12.
[21] T.T. Baby, S. Ramaprabhu, Investigation of thermal and electrical conductivity of graphene based nanofluids, Journal of Applied Physics, 108(2010) 124308.
[22] H. Tao, O.A. Alawi, O.A. Hussein, W. Ahmed, A.H. Abdelrazek, R.Z. Homod, et al., Thermohydraulic analysis of covalent and noncovalent functionalized graphene nanoplatelets in circular tube fitted with turbulators, Scientific Reports, 12(2022) 1-24.
[32] A. Wang, L. Long, W. Zhao, Y. Song, M.G. Humphrey, M.P. Cifuentes, et al., Increased optical nonlinearities of graphene nanohybrids covalently functionalized by axially-coordinated porphyrins, Carbon, 53(2013) 327-38.
[23] P. Khalili, M. Farahmandjou, Study of α-Fe₂O₃@ ZnO nanoleaves: Morphological and optical study, Materials Engineering Research, 2 (1), (2020)118-124.
[24] H. Zhao, J. Yang, L. Wang, C. Tian, B. Jiang, H. Fu, Fabrication of a palladium nanoparticle/graphene nanosheet hybrid via sacrifice of a copper template and its application in catalytic oxidation of formic acid, Chemical Communications, 47(2011) 2014-6.
[25] B. Ramaraju, C.-H. Li, S. Prakash, C.-C. Chen, Metal–organic framework derived hollow polyhedron metal oxide posited graphene oxide for energy storage applications, Chemical Communications, 52(2016) 946-9.
[26] B. Anasori, M. Beidaghi, Y. Gogotsi, Graphene–transition metal oxide hybrid materials, Mater Today, 17(2014) 253-4.
[27] Z. Wu, Zhou GM Yin L.-C. Ren WC Li F. Cheng H.-M, Nano Energy, 1(2012) 107-31.
[28] X. Fang, J. Liu, J. Wang, H. Zhao, H. Ren, Z. Li, Dual signal amplification strategy of Au nanopaticles/ZnO nanorods hybridized reduced graphene nanosheet and multienzyme functionalized Au@ ZnO composites for ultrasensitive electrochemical detection of tumor biomarker, Biosensors and Bioelectronics, 97(2017) 218-25.
[29] . Benaboud, M. Zaabat, M. Aida, B. Boudine, S. Benzitouni, T. Saidani, Fe2O4/ZnO-nanowires synthesis by dip-coating for Orange II-dye photodegradation, Optik, 144 (2017), 397-405.
[30] K. Anand, O. Singh, M.P. Singh, J. Kaur, R.C. Singh, Hydrogen sensor based on graphene/ZnO nanocomposite, Sensors and Actuators B: Chemical, 195(2014) 409-15.
[31] S. Xiong, S. Ye, X. Hu, F. Xie, Electrochemical detection of ultra-trace Cu (II) and interaction mechanism analysis between amine-groups functionalized CoFe2O4/reduced graphene oxide composites and metal ion, Electrochimica Acta, 217(2016) 24-33.
[33] C. Xu, X. Wang, J. Zhu, X. Yang, L. Lu, Deposition of Co 3 O 4 nanoparticles onto exfoliated graphite oxide sheets, Journal of Materials Chemistry, 18(2008) 5625-9.
[34] L.I. Hung, C.K. Tsung, W. Huang, P. Yang, Room‐temperature formation of hollow Cu2O nanoparticles, Advanced Materials, 22(2010) 1910-4.
[35] W. Zou, J. Zhu, Y. Sun, X. Wang, Depositing ZnO nanoparticles onto graphene in a polyol system, Materials Chemistry and Physics, 125(2011) 617-20.
[36] X. Wang, H.-F. Wu, Q. Kuang, R.-B. Huang, Z.-X. Xie, L.-S. Zheng, Shape-dependent antibacterial activities of Ag2O polyhedral particles, Langmuir, 26(2010) 2774-8.
[37] X.-L. Wu, L. Wang, C.-L. Chen, A.-W. Xu, X.-K. Wang, Water-dispersible magnetite-graphene-LDH composites for efficient arsenate removal, Journal of Materials Chemistry, 21(2011) 17353-9.
[38] M.S. Ghorashi, H.R. Madaah Hosseini, E. Mohajerani, M. Pedroni, R. Taheri Ghahrizjani, Enhanced TiO2 broadband photocatalytic activity based on very small upconversion nanosystems, The Journal of Physical Chemistry C, 125(2021) 13788-801.
[39] R.T. Ghahrizjani, M.H. Yousefi, Effects of three seeding methods on optimization of temperature, concentration and reaction time on optical properties during growth ZnO nanorods, Superlattices and Microstructures, 112(2017) 10-9.
[40] A. Lakshmanan, P. Surendran, S. S. Priya, K. Balakrishnan, P. Geetha, P. Rameshkumar, T. A. Hegde, G. Vinitha, K. Kannan, Investigations on structural, optical, dielectric, electronic polarizability, Z-scan and antibacterial properties of Ni/Zn/Fe2O4 nanoparticles fabricated by microwave-assisted combustion method, Journal of Photochemistry and Photobiology A: Chemistry, 402(2020), 112794.
[41] M.-T. Chen, M.-P. Lu, Y.-J. Wu, J. Song, C.-Y. Lee, M.-Y. Lu, et al., Near UV LEDs made with in situ doped pn homojunction ZnO nanowire arrays, Nano letters, 10(2010) 4387-93.
[42] M. McCune, W. Zhang, Y. Deng, High efficiency dye-sensitized solar cells based on three-dimensional multilayered ZnO nanowire arrays with “caterpillar-like” structure, Nano letters, 12(2012) 3656-62.
[43] W. Zhou, J. Zhang, Y. Liu, X. Li, X. Niu, Z. Song, et al., Characterization of anti-adhesive self-assembled monolayer for nanoimprint lithography, Applied Surface Science, 255(2008) 2885-9.
[44] M. Ameri, M. Ghaffarkani, R.T. Ghahrizjani, N. Safari, E. Mohajerani, Phenomenological morphology design of hybrid organic-inorganic perovskite solar cell for high efficiency and less hysteresis, Solar Energy Materials and Solar Cells, 205(2020) 110251.
[45] M. Azadinia, M. Ameri, R.T. Ghahrizjani, M. Fathollahi, Maximizing the performance of single and multijunction MA and lead-free perovskite solar cell, Materials Today Energy, 20(2021) 100647.
[46] R.T. Ghahrizjani, M. Ghafarkani, S. Janghorban, M. Ameri, M. Azadinia, E. Mohajerani, et al., ZnO–SrAl2O4: Eu Nanocomposite-Based Optical Sensors for Luminescence Thermometry, ACS Applied Nano Materials, 4(2021) 9190-9.
[47] A. Amirsalari, A.A. Ziabari, R.T. Ghahrizjani, S.F. Shayesteh, A fundamental study on the effects of nano-silver incorporation on the structure and luminescence properties of color centers in γ′-alumina nanoparticles, Journal of Luminescence, 192(2017) 910-8.
[48] A.R. Sadrolhosseini, E. Ghasami, A. Pirkarimi, S.M. Hamidi, R.T. Ghahrizjani, Highly sensitive surface plasmon resonance sensor for detection of Methylene Blue and Methylene Orange dyes using NiCo-Layered Double Hydroxide, Optics Communications, (2022) 129057.
[49] Y. Hu, J. Zhou, P.H. Yeh, Z. Li, T.Y. Wei, Z.L. Wang, Supersensitive, fast‐response nanowire sensors by using Schottky contacts, Wiley Online Library2010.
[50] K. Wang, M. Li, J. Zhang, H. Lu, Polyacrylonitrile coupled graphite oxide film with improved heat dissipation ability, Carbon, 144(2019) 249-58.
[51] W. Gao, The chemistry of graphene oxide, Graphene oxide, Springer2015, pp. 61-95.
[52] U. Hofmann, R. Holst, Über die Säurenatur und die Methylierung von Graphitoxyd, Berichte der deutschen chemischen Gesellschaft (A and B Series), 72(1939) 754-71.
[53] B. Jaleh, A. Jabbari, Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films, Applied Surface Science, 320(2014) 339-47.
[54] D.C. Marcano, D.V. Kosynkin, Berlin, JM Sinitskii, A, Sun, Z Slesarev, A Alemany, LB Lu and JM Tour Improved synthesis of graphene oxide Acs Nano, 4(2010) 4806.
[55] D.A. Jasim, N. Lozano, K. Kostarelos, Synthesis of few-layered, high-purity graphene oxide sheets from different graphite sources for biology, 2D Materials, 3(2016) 014006.
[56] P. Sengunthar, K. H. Bhavsar, C. Balasubramanian, and U. S. Joshi, Physical properties and enhanced photocatalytic activity of ZnO-rGO nanocomposites, Applied Physics A, 126, (2020) 1-9.
[57] A. S. Merlano, F. Pérez, R. Cabanzo, E. Mejía, L. M. Hoyos, and Á. Salazar, Chemical and morphological analysis of formation of rGO/ZnO composite obtained by microwave-assisted hydrothermal method., Journal of Physics: Conference Series, 1541(2020), 012015.
[58] E. K. Droepenu, B. S. Wee, S. F. Chin, K. Y. Kok, and M. F. Maligan, Zinc oxide nanoparticles synthesis methods and its effect on morphology: A review, Biointerface Res. Appl. Chem, 12, (2022), 4261-4292, 2022.
[59] T. Srinivasulu, K. Saritha, and K. R. Reddy, Synthesis and characterization of Fe-doped ZnO thin films deposited by chemical spray pyrolysis, Modern Electronic Materials, 3, (2017), 76-85, 2017.
[60] W. Wang, S. Guo, D. Zhang, and Z. Yang, One-pot hydrothermal synthesis of reduced graphene oxide/zinc ferrite nanohybrids and its catalytic activity on the thermal decomposition of ammonium perchlorate, Journal of Saudi Chemical Society,.23, (2019), 133-140, 2019.
[61] F. Fajaroh, I. D. Susilowati, and A. Nur, Synthesis of ZnFe2O4 nanoparticles with PEG 6000 and their potential application for adsorbent, in IOP Conference Series: Materials Science and Engineering, 515, (2019), 012049.
[62] M.J. McAllister, J.-L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, et al., Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chemistry of materials, 19(2007) 4396-404.
[63] Z. Luo, Y. Lu, L.A. Somers, ATC Johnson―High yield preparation of macroscopic graphen oxide membranes‖, J Am Chem Soc, 131(2009) 898-9.
[64] P. Khanra, T. Kuila, N. Kim, S. Bae, Yu D sheng, Lee JH, Simultaneous bio-functionalization and reduction of graphene oxide by baker’s yeast Chem Eng J, 183(2012) 526-33.
[65] M. Wang, G. Tan, H. Ren, A. Xia, Y. Liu, Direct double Z-scheme Og-C3N4/Zn2SnO4N/ZnO ternary heterojunction photocatalyst with enhanced visible photocatalytic activity, Applied Surface Science, 492(2019) 690-702.
[66] T. Kuila, Saswata Bose, Partha Khanra, Ananta Kumar Mishra, Nam Hoon Kim, and Joong Hee Lee, Biosensors and Bioelectronics, 26(2011) 4637-48.
[67] G. Eda, M. Chhowalla, Chemically derived graphene oxide: towards large‐area thin‐film electronics and optoelectronics, Advanced materials, 22(2010) 2392-415.
[68] C. Rodwihok, S. Choopun, P. Ruankham, A. Gardchareon, S. Phadungdhitidhada, D. Wongratanaphisan, UV sensing properties of ZnO nanowires/nanorods, Applied Surface Science, 477(2019) 159-65.
[69] R. Kubo, Electronic properties of metallic fine particles. I, Journal of the Physical Society of Japan, 17(1962) 975-86.
[70] S. Nadeem, M. Bukhari, M. Javed, S. Iqbal, M. N. Ahmad, H. Alrbyawi, M. M. Al-Anazy, E. B. Elkaeed, H. Hegazy, M. A. Qayyum, Cation Incorporation and Synergistic Effects on the Characteristics of Sulfur-Doped Manganese Ferrites S@ Mn (Fe2O4) Nanoparticles for Boosted Sunlight-Driven Photocatalysis. Molecules, 27 (22), (2022), 7677.
[71] S. Perumbilavil, K. Sridharan, D. Koushik, P. Sankar, V.M. Pillai, R. Philip, Ultrafast and short pulse optical nonlinearity in isolated, sparingly sulfonated water soluble graphene, Carbon, 111(2017) 283-90.
[72] W. Song, C. He, W. Zhang, Y. Gao, Y. Yang, Y. Wu, et al., Synthesis and nonlinear optical properties of reduced graphene oxide hybrid material covalently functionalized with zinc phthalocyanine, Carbon, 77(2014) 1020-30.
[73] P.-l. Li, Y.-h. Wang, M. Shang, L.-f. Wu, X.-X. Yu, Enhanced optical limiting properties of graphene oxide-ZnS nanoparticles composites, Carbon, 159(2020) 1-8.