Investigating the Effect of Different Data Clustering Methods on the Accuracy of Models Related to Accounting Estimates by Comparing Traditional and Classical Clustering Methods
Subject Areas : Management AccountingS. Mohsen Salehi Vaziri 1 , Jamal Barzaghi Khaneghah 2 *
1 - University of Yazd, Yazd, Iran
2 - Assistant Professor / Yazd University, Iran
Keywords: data mining, Clustering, traditional clustering, classic clustering,
Abstract :
Today, the use of accounting information estimation is the same as other disciplines because of the lack of access to all information. For this reason, in this research, we tried to study the accuracy of accounting estimation models using different clustering methods to determine how different clustering methods increase the accuracy of the desired models and the preferred method Among the different clustering methods, which method can be used to increase the accuracy of the models. The research sample consisted of 99 companies listed in the Tehran Stock Exchange. In order to collect the required data, the financial statements and notes of the 9-year period (2008-2017) were used by the companies. The results of the research showed that the use of different clustering methods increases the accuracy of accounting estimates models in most cases. However, among the clustering methods used in the research, the classic clustering method is a more appropriate method than the method The traditional approach is to increase the accuracy of accounting estimates models.
* رزاقی, سمیه؛ سلمانی, بهزاد, کازرونی, سید علیرضا و فلاحی،فیروز. (2017). "بررسی امکان تشکیل منطقه بهینه پولی در کشورهای عضو سازمان همکاری اسلامی (OIC) با استفاده از تکنیک خوشهبندی فازی و خوشهبندی سنتی". فصلنامه علمی پژوهشی نظریه های کاربردی اقتصاد.
* شاکری، محمود و عبداللهی، محمود (1394). خوشه بندی داده ها، مروری بر روش های موجود و مقایسه عملکرد آنها. کنفرانس بین المللی پژوهش های کاربردی در فناوری اطلاعات، کامپیوتر و مخابرات. دانشگاه آزاد اسلامی واحد تربت حیدریه.
* عرب مازار یزدی، محمد و قاسمی، مهسا (1388). "برآورد قیمت عرضه های عمومی اولیه با استفاده از شبکه عصبی مصنوعی". بررسی های حسابداری و حسابرسی.1388. ص 74-95.
* معتمنی، همایون؛ بیکی، منظر و جعفر نژاد، عین الله (1390). "مقایسه الگوریتم های خوشه بندی فازی". کنفرانس بین المللی مدل سازی غیر خطی و بهینه سازی،آمل، 1390.
* Chen, T., Zhang, N. L., Liu, T., Poon, K. M., & Wang, Y. (2012). Model-based multidimensional clustering of categorical data. Artificial Intelligence, 176(1), 2246-2269.
* David.j.HAND.Data mining:statistics and more December 2002.
* Dechow, P. M., & Dichev, I. D. (2002). The quality of accurals and earnings: The role of accrual estimation errors. The Accounting Review, 77, 35–59.
* DeFond, M. L., & Jiambalvo, J. (1994). Debt covenant violation and manipulation of accruals. Journal of Accounting and Economics, 17, 145–176.
* Ecker, F., Francis, J., Olsson, P., & Schipper, K. (2013). Estimation sample selection for discretionary accruals models. Journal of Accounting and Economics, 56, 190–211
* Flexer, A. (2001). On the use of self-organizing maps for clustering and visualization. Intelligent Data Analysis, 5(5), 373-384.
* Fred.a.lourenco.a.2008.cluster ensemble methods:from single clustering to combined solution studies in computerings intelligence (sci)126.3-30.
* Han.j.m.kamber.data mining:concepts and techniques morgan kauifmann san Francisco 2000
* Jain.A.K.law.martin.H.C. (2005).data clustering a users dilemma.1st international conference.premi Kolkata india december20-22.
* Lev, B. (1989), "On the Usefulness of Earnings and Earnings Research: Lessons and Directions from Two Decades of Empirical Research" Journal of Accounting Research, Vol. 27: 153-192
* Lev, B., S. Li., T. Sougiannis (2010), "The Usefulness of Accounting Estimates for Predicting Cash Flows and Earnings" Review of Accounting Studies, Vol. 15,. 4,. 779-807
* López-Rubio, E., Palomo, E. J., & Ortega-Zamorano, F. (2018). Unsupervised learning by cluster quality optimization. Information Sciences, 436, 31-55.*McNicholas, P. D. (2016). Model-based clustering. Journal of Classification, 33(3), 331-373.
* Nawaz, T., Cavallaro, A., & Rinner, B. (2014, October). Trajectory clustering for motion pattern extraction in aerial videos. In Image Processing (ICIP), 2014 IEEE International Conference on (pp. 1016-1020).
* Patrick, K., Hayes, N., & Stephen, J. (2017). Statistical significance for hierarchical clustering. Biometrics.
* Parthasarathy, S., & Ogihara, M. (2000, September). Clustering distributed homogeneous datasets. In European Conference on Principles of Data Mining and Knowledge Discovery (pp. 566-574). Springer, Berlin, Heidelberg.
* Raftery, A. E., & Dean, N. (2006). Variable selection for model-based clustering. Journal of the American Statistical Association, 101(473), 168-178.
* Roychowdhury, S. (2006). Earnings management through real activities manipulation. Journal of Accounting and Economics, 42, 335–370
* Sterehl.a.ghosh.j.2002.cluster ensembles –a knowledge reuse framework for combining multiple partitions.jornal of machine learning research 3(dec):583-617
_||_