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Abstract: In this paper, the problem of the position and attitude tracking of an autonomous underwater 

vehicle (AUV) in the horizontal plane, under the presence of ocean current disturbances is discussed. The 

effect of the gradual variation of the parameters is taken into account. The effectiveness of the adaptive 

controller is compared with a feedback linearization method and fuzzy gain control approach. The proposed 

strategy has been tested through simulations. Also, the performance of the proposed method is compared 

with other strategies given in some other studies. The boundedness and asymptotic convergence properties of 

the control algorithm and its semi-global stability are analytically proven using Lyapunov stability theory 

and Barbalat’s lemma. 
 

Index Terms: Autonomous underwater vehicles, adaptive control, nonlinear control, fuzzy approximation. 
 

 

I. Introduction 

Autonomous underwater vehicle (AUV) is a field of 

increasing interest due to its many interesting 

applications. Underwater vehicles are extensively 

employed in the offshore industry, subaquatic 

scientific investigations and rescue operations, 

finding sunken ships, searching for lost artifacts. As 

they are untethered, they may operate under ice, 

opening up vast, largely unexplored Arctic areas 

that are inaccessible to any other kind of research 

vessel, and operate at depths too deep for tethered 

vehicles. They are also of military interest (e.g. see 

[1]). Many control methods for underwater vehicles 

have been discussed in the literature in the past 15 

years to handle uncertainties related to the 

dynamics, hydrodynamics and external disturbances. 

see for instance Fossen & Fjellstad, 1995; Hsu et al., 

2000, Antonelli et al., 2004; Wang & Lee, 2003; Do 

et al., 2004. Especially, for developing advanced 

control strategies for Autonomous Vehicles. Recent 

developments in this area are well summarized in 

[2,3] in which different motion control algorithms 

have been developed under various hypotheses. 

Adopting a linearized model, some linear control 

techniques such as PID controller [4] and LQR 

algorithm [5] have been developed with acceptable  

performance in only special kinds of maneuvering.  

Taking square integrable bounded disturbances into 

account, linear ��controller has been also presented 

[6], in the absence of parameter variations. Some 

more recent investigations concern with model 

uncertainties and present non-linear based methods 

such as sliding mode control in which the upper 

bounds of uncertainties and disturbances are known 

in advance [7,8]. In the horizontal trajectory 

tracking control algorithm, a sliding mode control 

algorithm based on the line of sight method has 

been proposed [9,10], which achieves trajectory 

tracking through reducing the error of yaw angle 

continually. But this method cannot guarantee to 

converge the tracking error to a minimum, which is 

a low-precision sliding mode control algorithm. 

Intelligent control algorithms based on neural 

networks and fuzzy logic have been also applied to 

those classes of underwater vehicles, for which the 

experimental data is available [11]. However, the 

new AUVs are highly coupling non-linear and time-

varying system. Taking into account the uncertainty 

of environmental interference, it is difficult to 

establish an accurate motion model. 
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Therefore, the control method used for new AUV 

should get rid of the dependence on the precise 

mathematical model. The nonlinear trajectory 

tracking control of the AUVs in complex sea 

conditions has been a key issue in AUV design 

which is also concerned by AUV designers. So, it 

has important theoretical and practical significance 

to study this issue. It is difficult to obtain high 

performance by using the conventional control 

strategies. The control system should be able to 

learn and adapt to the changes in the dynamics of 

the vehicle and its environment. In [12] a discrete 

adaptive control strategy for coordinated control of 

AUVs is presented. In [13] a variety of control 

methodologies, including sliding mode control, 

adaptive control and output feedback control of 

AUVs are given. Some studies applying fuzzy 

control to under water robots can be found in [14], 

[15] and [16]. This paper, addresses the problem of 

position and attitude tracking of an AUV in the 

horizontal plane, using two rudders in front and rare 

side of the vehicle. An adaptive control law is 

presented to effectively compensate the hydrody-

namic effects; Then the effectiveness of the adaptive 

controller is compared with a feedback linearization 

approach, in the presence of external disturbances 

[17]. Moreover, in some references to achieve the 

better stability performance of the system, the 

complicated mathematical operations are used. On 

the other hand, more stability of the system can be 

guaranteed by means of combining fuzzy logic 

controller with the control strategies [18]. The main 

contribution of this paper is online approximation of 

adaptive gain with fuzzy system, In addition, the 

adaptive control method has been compared with 

fixed gain and fuzzy gain approach and eventually 

simulation results have presented. The remainder of 

this paper is organized as follows. Introductory 

materials and a review of the current research trends 

in literature are treated in section I. Section II 

addresses a brief discussion on the dynamic 

modeling of AUV followed by controller design 

details and its stability analysis. Uncertain 

parameters are introduced in this section, as well. 

The feedback linearization control law is presented 

in section III-A. In section III-B, the adaptation law 

and control law are derived and parameter 

uncertainties are taken into account in the control 

law. Section III-C introduces the fuzzy system and 

online estimation of the adaptive gain. Numerical 

values used for the simulation, are given in section 

IV-A. Section IV-B presents the simulation studies 

when the feedback linearization law is implemented. 

The simulation results of the impleme-ntion of the 

adaptive controller is presented in section IV-C and 

the results are compared with that of the feedback 

linearization. Section IV-D presents the simulation 

for fuzzy gain approximation in which the results 

described and compared with fixed gain in adaptive 

control law. 

 

II. Vehicle Dynamics Model 
AUV dynamics are highly nonlinear, coupled, and 

time varying, including hydrodynamic parameter 

uncertainties. Several modeling and system 

identification techniques have been proposed by 

researchers ([19] and [20]). Restricting our attention 

to the horizontal plane, the mathematical model 

consists of the nonlinear sway (translational motion 

with respect to the vehicle longitudinal axis) and 

yaw (rotational motion with respect to the vertical 

axis) equations of motion. In a local (moving) 

coordinate frame fixed at the vehicle’s geometrical 

center, Newton’s equations of motion are 

 

 
Fig. (1): AUV coordinate 

 ���� � �	 � 
�	� � 
�	�� � �                       (1) ��	� � �
���� � �	� � �
��	 � �               (2)  

where v and r are relative sway and yaw velocities 

of  the moving vehicle with respect to water. Y and 

N represent the total excitation sway force and yaw 

moment, respectively. 
� and 
�  are the coordinates 

of the vehicle center of gravity in the body fixed 

local frame. m and �� are the vehicle mass and mass 

moment of inertial. Following standard ship 

maneuvering assumptions, these forces can be 

expressed as the sum of quadratic drag terms and 

first order memoryless polynomials in v and r, 

which represent added mass and damping due to 

water. In this way the nonlinear equations of motion 

in the horizontal plane become �� �� � ��� � � 	���
� � ���� � ������� � ������� �ɖ ��, 	� � ���� � ��� ����	                            (3) �� ��
� ���� � � 	���" ����� � �#����� ��#����� � ɖ���, 	� � ���� � ��� ��
���	   (4) 

where ɖ  (v, r) and ɖ� (v, r) are defined as 
 ɖ ��, 	� ≜ %

� & '()*�+� ��,-��.|�,-�|
01�23456 7+                 (5) 

ɖ���, 	� ≜ %
� & '()*�+� ��,-��.|�,-�|

01�23456 7+                 (6)  
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Note that the hydrodynamic forces and moments are 

written in accordance with the SNAME notation 

[21]. In the horizontal plane, the kinematic 

equations of motion of the vehicle yaw rate and the 

inertial position rates, can be written as 
  	9� � 	                                                                    (7) 
� � �:;<9 � �<=>9                                             (8) 
� � �<=>9 � �:;<9                                              (9) 
 

solving (3) and (4) for �� 	and 	� , results in 
 �� � ?  �� � ? ��	 � 7���, 	� � @  ���� � @ �����    (10)     																																																																					� � ?� �� � ?���	 � 7���, 	� � @� ���� � @������   (11) 

 

where ?5A, @5A and :5 are the related coefficents that 

appear when solving (3) and (4). 

During regular cruising, the drag related terms 7�(v,r) and 7�(v,r) are small, and can be neglected 

[22]. Note that since, all the parameters ?5A 	and @5A 
include at least two hydrodynamic coefficients, such 

as ��� , ��� , ��� , ��� ; hence they are uncertainties for 

this system. Later, when adaptive control is 

introduced, all these parameters will be estimated, to 

account for the changes in the environment and 

vehicle properties. 

 

III. Control Law 

A. Feedback linearization 
A feedback linearization approach is adopted, by 

taking the time derivative of (7) and (9) 
B � �9�:;<9 � ��:;<9 � �9�<=>9                      (12) 9B � 	�                                                                    (13) 
 

substituting (10) and (11), into the last two 

equations, results in: 
 
B �9�:;<9 � C?  �� � ? ��9� � @  ���� � @ �����D:;<9 ��9<=>9                                                                  (14) 9B � ?� �� � ?���	 � @� ���� � @������       (15) 

Let us consider a signal E(t) as follows:    
 E�F� � 
G�0� � H0I J�0I ��	. . . �HLJ                 (16) 
 

with H ,…,	H0 being positive constants chosen such 

that M0 � H0I M0I �⋯� HL is a stable (Hurwitz) 

polynomial. Thus we let 
B � O, and 9B � � in (14) 

and (15), and solve the (14) and (15) to obtain �� 
and �� 
 

 �� � P@��CO<J:9 � �9�F?>9 � �9� � ?  �� �? ��	D � @ ��� � ?� �� � ?���	�Q/�@  @�� �@� @ ����                                                            (17) 
 

�� � �S@� CO<J:9 � �9�F?>9 � �9� � ?  �� �? ��	D � @  �� � ?� �� � ?���	�T/�@  @�� �@� @ ����                                                            (18) 
 

where µ and � are the equivalent inputs to be 

designed (equivalent in the sense that determining 

each, amounts to determining �� or ��, and vice 

versa). Let the tracking error of position and attitude 

of the vehicle be: 
 
U � 
 � 
V                                                           (19) 9W � 9 � 9V                                                         (20) 
 

where 
V	and 9V 	are the desired model reference. 

Defining two signals as    
 O ≜ 
BV � 2Y 
U� � Y �
U                                          (21) � ≜ 9BV � 2Y�9W� � Y��9W                                        (22) 
[ 

where Y > 0 and Y�> 0 are design parameters, will 

lead to 
 
UB � 2Y 
U� � Y �
U � 0                                            (23) 9WB � 2Y�9W� � Y��9W � 0                                          (24) 
 

which are Hurwitz polynomials. 

 

B. Parameter Uncertainties 

As stated before, all the parameters ?5Aand @5A 
comprise hydrodynamic uncertainties which must 

be estimated. On the other hand, the vehicle’s 

forward velocity u is assumed to be constant or 

updated by hydrodynamic coefficients, but 

subjected to changes from environment  and ocean 

currents. Thus all terms including u must also be 

estimated. To this end, instead of estimating all ?5A 
and @5A, parameter functions, M5, are defined in a 

linear parameterization process. 
 �� � M [\,���50]^1�] _ � M�� � M`	 � Ma�             (25) 

�� � �Mb [\,���50]^1�] _ � Mc� � Md	 � Me�	         (26) 

 

where  M5 for i=1,…,8 are parameter functions, in 

terms of ?5A , @5Aand u. 

M � �ff��gg�ffI�fg�gf�hf  M� � �gf4fghI�ff4ggh��gg�ffI�fg�gf�hf  
M` � �gf4ffhI�ff4gfhI�ffh��gg�ffI�fg�gf�hf   Ma � �gf��gg�ffI�fg�gf�hf	   
Mb � �fg��gg�ffI�fg�gf�hf  Mc � �fg4gghI�gg4fgh��gg�ffI�fg�gf�hf   
Md � �fg4fghI�gg4ffhI�fgh��gg�ffI�fg�gf�hf   Me � �gg��gg�ffI�fg�gf�hf  
The vector form of the above equations will be 

rather more useful in the derivation of the adaption 

law 
 

 i����j � kl                                                         (28) 
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where P=�M , M�, M`, Ma, Mb, Mb, Mc, Md, Me�m, and W is 

the regressor matrix. Equations (25) and (26) will 

represent the dynamic equations of the system, if µ 

and v are replaced by 
B 	and 9B  respectively. 

Since, the uncertain parameters existed in P are all 

unknown, they must be estimated. Thus, the control 

law is modified as follows: 

 �� � M̂ [\,���50]^1�] _ � M̂�� � M̂`	 � M̂a�             (29) 

�� � �M̂b [\,���50]^1�] _ � M̂c� � M̂d	 � M̂e�          (30) 
 

where M̂5 represents parameter estimations. Let the 

estimation error of parameters be MU5=M5 � M̂5. One 

can find the error dynamics by substituting (29) and 

(30) into the system dynamic equations. This will 

result  

 

o)B I\^1�]9B p � �qI kMU                                                 (31) 

 

where M	r is the estimation error vector and �q is 

defined by 
 �q � stugtuv 	ItuwItuxy                                                        (32) 
 

error dynamics are achieved by substituting (29) and 

(30) into the dynamic equations of the system (3) 

and (4). This results  

 

stugtuv 	ItuwItuxyz{|{}~q
o)BI\^1�]9B p �

�I�B �����������L 	I�L 	�L 	]BL 	 LI�B ����������� 	L� 	L� 	 L]B ������������������������
�

MU																			  (33) 

one can write Eq. (31) in state space form by 

defining the state vector X and the output vector Y 

 �� � �� � ���qI kMU�                                        (34) � � ��� � ��� � ��� � '�                                    (35) 

 

where Φ � 7=?��� , ��� is a filtering matrix, and ��� 	is the vector of filtered errors, and N=�
U, 9W�m.  

 

 Adaption Law:  

Having written the error dynamics in state space 

form, we employ a Lyapunov-based approach to 

derive the adaptation law. Consider the following 

Lyapunov candidate 

 � � �m�� � lWm�I lW                                         (36) 
 

where �	is a positive definite matrix, and �5=diag[� , �� , … , ��] with	�5 > 0 . Taking the time 

derivative of (36) yields  

 �� � ��m�� � �m��� � 2lWm�I MU�                        (37) 

 

Substitution of the state space equations of error 

dynamics into (37) results 

 �� � 2lWm��I MU� � km�qIm�m��� � �m��m� � ����	    (38)           
 

This equation can further be simplified, by adopting 

the following lemma 
 

Lemma 3.1 (Kalman-Yakubovich-Popov): Consider 

a controllable linear time-invariant system  

 X� � AX � bu                                                        (39) 
 � CX                                                                 (40) 

 

The transfer function h(p)= :�M� � ��I @	is strictly 

positive real  if, and only if, there exist positive 

definite matrices � and ℚ such that 

 Am� � �A � �ℚ                                                 (41) �b � cm                                                               (42) 
 

 According to the above lemma, one can write ��m� � ��� � �ℚ in Eq. (38). The adaptation law 

is found by setting the first term on the right side of 

(38) equal to zero  
 2lWm��I MU� � km�qIm�m��� � 0                       (43) 
 

Rearranging the above equation and noting that lW� � �l¦�  and using Lemma 2.1, the adaptation law is 

found as:  
 l¦� � �km�qIm�                                                   (44) 

and Eq. (38) will become: �� � ��mℚ�                                                        (45) 

 

One can simply prove the convergence of tracking 

error to zero, using Barbalat’s Lemma which is 

given here. 

 Given that a function tends towards a finite limit, 

Barbalat’s lemma indicates the additional 

requirement that can guarantee its derivative 

actually converges to zero. In other words we have 

the following lemma. 

Lemaa 3.2 (Barbalat’s Lemma) If the differentiable 

function f(t) has a finite limit as t→ ∞, and if f is 

uniformly continuous, then f� (t) →0 as t→ ∞ 

By using Barbalat’s lemma [23] for the analysis of 

dynamic systems, one typically uses the following 

immediate corollary, which looks very much like an 

invariant set theorem in Lyapunov analysis 
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Lemma 3.3 (Lyapunov-Like Lemma): If a scalar 

function V (x, t) satisfies the following conditions: 

V (x, t) is lower bounded and V�  (x, t) is negative 

semi-definite and V�  (x, t) is uniformly continuous in 

time then  V�  (x, t)	→0 as t→ ∞. 

 

C. Fuzzy gain approximation 

Fuzzy system consists of four main component; the 

fuzzifier, the fuzzy rule base, the fuzzy inference 

and the defuzzifier. The fuzzifier transfers the 

measured input data into corresponding fuzzy sets 

which can be un-derstood by the fuzzy inference 

system. The fuzzy rule base describes the 

correlation between input and output fuzzy sets in 

the forms of IF-THEN rules. It is the core of the 

whole system. The fuzzy inference engine uses 

techniques in approximate reasoning to determine a 

mapping from the fuzzy sets in the input space to 

the fuzzy sets in the output space. The defuzzifier 

transfers fuzzy sets in the output space into 

numerical data in the output space. In this section, 

we assumed that adaptive gain matrix (Γ) is 

unknown. In order to design a proper control law we 

employ fuzzy inference system for online estimation 

of unknown function. The fuzzy inference system 

used in this study is Mamdani. There are 5 triangular 

fuzzy sets for input and output taken into account in 

the fuzzy system. The ranges of these fuzzy sets 

must be varied in accordance with the variation of 

output error in the related state. Input error is 

decomposed to three fuzzy sets expressed as 

Negative Big (NB), Negative Small (NS), Zero 

(ZE), Positive Small (PS) and Positive Big (PB). 

Output is a singleton function expressed as Very 

Small (VS), Small (S), Medium (M), Large (L) and 

Very Large (VL). Inference engine in the fuzzy 

system is completed by a set of IF-THEN rules in 

the form: 	Rule	1:			if	error		is			NB		then			Γ		is			VS Rule	2:			if		error		is			NS		then				Γ		is			S 												Rule	3:			if	error		is		ZE		then		Γ		is		M 	Rule	4:			if	error		is			PS			then					Γ		is				L 		Rule	5:			if	error		is			PB			then				Γ		is			VL 

 
The defuzzification of the output is accomplished by 

the method of centroid. The fuzzy adaptation law 

that used and in next section is compared with fixed 

gain is: l¦� � Γ�h��)km�qIm�                                            (46) 

 

IV. Simulation Results 

A. Control design parameters 

The numerical values and constant parameters used 

for the simulations, in SI units, are given here. All 

values have been normalized. Time has also been 

non dimensionalized. 

 
m = 0.0358 Iz = 0.0022 ���  = −0.00178 ���   = −0.0343 �� = −0.1070 �#�= 0.01241 ���   = −0.00047 ���  = −0.00178 

N� = −0.00769 �#�  = −0.0047 
Ã	= 0.0014 Yr = 0.01187 �#�= 0.01241 Nr = −0.0039 �#�= 0.0035  

 

B. Feedback Linearization Control 

The control objective is to track 
V = 2 sin(2t) when 

the initial condition for y is zero, and to track 9V= 

sin(2t) when the initial condition for 9 is 9L = 30◦. 

We have chosen λ= 5, since it requires minimum 

range of rudder deflection. This is important with 

respect to saturation of rudders which will be 

discussed shortly. System responses to disturbance 

are shown in Fig. 2 and Fig. 3. 

 

 
Fig. (2): Bow rudder deflection; feedback linearization approach 

 

 
Fig. (3): Tracking error of y; feedback linearization approach 

C. Adaptive Control 
Numerous simulations were performed and it was 

concluded that a good compromise between control 

effort and a good response, can be achieved using 

the following design parameters  
 � � �� � 100                                                                    � � �� � ⋯ � �e � 0.002                                                Y � 10                                                                                Y� � 15                                                                              

  (47)  

 (48) 

 (49) 

 (50) 
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Tracking error of 9 and y with Adaptive law are 

shown in Fig. 4 and Fig. 5, a careful observation 

reveals that its amplitude is decreasing with time. 

This slow rate of convergence is due to the small 

value of �5, which was inevitably chosen to avoid 

instability. Adaptive controller compared with 

feedback linearization approach in Fig. 6., clearly 

shows more convergence to zero and better 

trajectory tracking and less undershoot as shown in 

Fig.7, less stern and bow rudder deflection and 

better response for this  adaptive controller with 

fixed gain. 

 

 
Fig. (4): Tracking error of 9; Adaptive law 

 

 
Fig. (5): Tracking error of y; Adaptive law 

 

Fig. (6): Tracking position error comparison 

Fig. (7): Stern rudder deflection comparison 

D. Adaptive law with fuzzy gain (ÄÅÆÇÇÈ� 
In this section, some simulation results are provided 

to demonstrate the effectiveness of the proposed 

fuzzy gain control technique. Here, the main 

objective is to control horizontal motion of 

underwater vehicle by using fuzzy gain for Eq. (46) 

and compare it with the adaptive control with fixed 

gain and show the effectiveness of this approach as 

shown in Fig. 8 and Fig. 9 which results in stern 

rudder deflection illustrated in Fig. 10. 

 

 
Fig. (8): Tracking  position error comparison 

 

 
Fig. (9): Yaw angle error comparison 
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Fig. (10): Stern rudder deflection comparison 

 

V. Conclusion 

In this paper, a fuzzy adaptive control system has 

been addressed for AUVs. The proposed controller 

was shown to be suitable to compensate the ocean 

current disturbance and estimate unknown 

hydrodynamic coefficient with adaptive law. 

Adaptive controller with fuzzy gain has been 

effectively utilized to achieve better tracking 

performance than the case in which the gains are 

fixed. Simulation results show lower tracking error 

with shorter convergence time to zero. Moreover, 

the amplitudes of stern and bow rudder control 

signals are smaller in fuzzy adaptive controller than 

those in adaptive. These results show that the 

proposed controller effectively yields better 

performance than the case of fixed gains in adaptive 

rule. However, in this paper, we concentrated on the 

case of a vehicle workspace free of obstacles. In the 

future, more work will be done considering collision 

avoidance to improve the design. 
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