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less resources on FPGA, but maximum frequency is
reduced 10 MHZ instead. Authors of [12] implemented
the LMS adaptive filter on ALTERA Cyclone II FPGA.
Their filter fastest convergence speed at 1/2'° step-size
is 1.46 ms. Comparing this with the averaged convergence
speed of the proposed method implemented on XILINX
SPARTAN3E (200 us), shows 1460/200=7.3 speedup.
And comparing with implementation on XILINX
VIRTEX4 (125 us), shows 1460/125=11.68 speedup.
Authors of [13] implemented LMS core for ANC system
on TMS320-C40 DSP processor family. The computatio—
nal time to execute on this DSP processor is about 6.2
ms. Comparing to proposed model implemented on
SPARTAN3E FPGA, shows 6200/200=31 speedup.
Authors of [14] implemented a real-time adaptive noise
cancellation system based on an improved adaptive wiener
filter on Texas Instrument TMS320C6713 DSK. They
reported that floating point implementation of LMS filter
takes worst case time of 38.95 ms to compute the filtering
of heavy sine noisy signal consisting of 4096 samples per
frame and the FIR filter is 40 taps long. Comparing with
our proposed model with the same number of samples
and filter taps implemented on SPARTAN3E FPGA, we
have 38950/6553.6=5.94 speedup.
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7- Conclusion

A fixed-point LMS-based adaptive noise cancellation
core for FPGA-hardware implementation with low
resource utilization was proposed. Some data problems
were studied and effective methods were discussed. The
core is based on FIR filter structure with 50 taps length
and 16-bits signed coefficients. According to the results
obtained, the system have successfully adapted and
learned the environment statistics with a fast convergence
speed. Comparisons with other implementations showed
better convergence speed and lower resource utilization
on FPGA. The proposed model is FPGA-brand
independent so can be implemented on any FPGA brand
(XILINX, ALTERA, and ACTEL). Although using a
pure-hardware implementation results in high perform—
ance than software or HW/SW co-design implementation,
it is much more complex and low flexible. Future studies
would be focused on implementing variable step-size
NLMS algorithm (VSS-NLMS).
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Fig. (5): Test data creation with band-limited white noise

It is consist of signal generators, 12bit ADC quantizer
and etc. Test data is created with Simulink and then is
exported to MATLAB workspace. An M-file is designed
to write the results in separate text files to use in
ModelSim VHDL simulator. Designed core VHDL file
and Test Bench file is compiled in ModelSim Simulation
software as VHDLO3 standard. At the end of simulation
the output data which has been written in a text file is
brought to MATLAB workspace and converted from
double to Int16. Then the required plots are derived.

5-2- Software Simulation Results
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Fig. (6): (a). Desired and filter output signals
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Fig. (6): (c) Residual error (learning curve)
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In our simulation a 200 hertz sine signal is degraded with
band limited white noise with 0.015 noise power (PSD).
The results are shown in Fig. (6) SNR results are
illustrated in table (3).

Table (3): Simulation performance
Input SNR | Output SNR | SNR Enhancement
1.0831dB | 8.7515dB 7.6684 dB

5-3- Synthesis-Implementation Results

The proposed LMS-based ANC core is synthesized and
implemented on XILINX VIRTEXS5 (XC5vIx50t) chip
using XILINX ISE software version 10.1. Resource
utilization results are given in table (4) Some part of
hardware-implementation result is shown in Fig. (7).
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Fig. (7): Some part of implemented hardware on FPGA

Table (4): Implementation-resource utilization on
XcS5vIx50t-3ff665
Used Available Utilization

Slice Registers 2,618 28,800 9%
Slice LUTs 2,564 28,800 8%
occupied Slices 1,264 7,200 17%
bonded IOBs 54 360 15%
BUFG/BUFGCTRLs 1 32 3%
DSP48Es 2 48 4%
Maximum Frequency 103.581 MHz

6- Comparison with Other Works

Authors of [11] implemented an adaptive noise canceller
system on both XILINX (4VSX25ff668) and ALTERA
(EP2S15F484C3) FPGA. Comparing the results shows
that the proposed method in this paper utilizes about 16%
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4-1- LMS Entity

The designed LMS entity is composed of reset, clock,
adc_new_data, desired, input and output ports as
illustrated in Fig. (2). Reset, clock and adc_new_data
signals are one-wire ports while the others are 17 bits-
long ports. The reset signal is used for resetting the
algorithm and bringing it to initial values. The clock
signal should be connected to processing clock. Because
the algorithm should know when ADC has converted a
new data, a signal called adc_new_data is provided so
that it is asserted for a short time and then de-asserted.
When working, first the output of the core is calculated,
then is compared to the desired value and the error is
obtained. The error is used to update the coefficients of
the filter. This process is done repetitively. The ERD
(Entity Relationship Diagram) of designed LMS-based
FIR core is illustrated in Fig. (3).

ade_new_data| >——ade_new data

ok ok

desired[16:0] __=——desired[16:0] output16:0)==={_ output[16:0]

input[16:0] [ =——tinpu{16:0]
reset| >——freset

Fig. (2): Entity of fixed-point standard LMS core

Bys-ldent. Core Initializatio

Read New Sample
Bys-ldent. Output Calculatio
(Multiply and Truncate)

Coefficients Update
(Multiply and Truncate)

—i Output Final Result

Fig. (3): ERD of LMS-based FIR core

5- Simulation of Proposed Model

The performance of the proposed FPGA-based adaptive
noise canceller core is evaluated. But beforehand, the
adaptive noise cancellation entity with LMS algorithm is
simulated on TMS320C6416 DSP chip from TEXAS
INSTRUMENTS Company. This processor works up to
one Giga hertz in speed and thus can provide multiplica—
tion and accumulation (MAC) in real time. This processor
has two register banks called A and B, and also uses
direct memory access (DMA) mechanism. Code composer
studio (CCS) software is used for compilation and
simulation. This software is capable of drawing graphs
and calculating number of used machine cycles. In our
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simulations, the frequency of input signal in both tests is
considered to be 100 and 10 hertz respectively. And
additive white Gaussian noise (AWGN) is added to input
signals. Preparation of input signals was done in
MATLAB software and they were changed to 32-bit
integer format to be used in CCS software. To enter data
3in CCS software, break point and probe point tools were
used. Good performance of the designed core in reducing
noise is shown in Fig. (4). By using clock profiling, the
number of elapsed machine cycles for noise reduction of
each input sample is 1509922 cycles. According to the
processor clock which is one Giga hertz, the total time
required to reduce noise from each input sample is 1.51
millisecond. Of course in the above situation, no optimiz—
ation is done by compiler on the program code. If the
optimization level is changed from the present situation
(NONE) to FUNCTION(-O2) situation, the compiler will
optimize the program code and reduce the number of
machine cycles to 90118, which means the total time will
be decreased to 90.12 microseconds, which is very low
and good enough for real-time applications.

In the next section, the performance of the proposed
FPGA-based adaptive noise canceller core is evaluated.
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Fig. (4): Noisy input signal and cleared signal. Input signal
frequency is 10 Hertz and SNR is 10 dB

5-1- Test Data Preparation

For simulation and verification of the designed FPGA-
based ANC core, there should be some test data.
MATLAB Simulink was used to create the essential test
data as can be seen in Fig. (5).

V)



Journal of Transactions on Electrical Technology — Vol.2 —-No.7- Autumn 2011

Where M is the number of taps and Sy is the maximum
value of the power spectral density (PSD) of the tap
inputs u. The good performance of the LMS algorithm
and its simplicity has caused it to be the most widely used
algorithm in practice. For an N tap filter, the number of
operations has been reduced to 2N multiplications and N
additions per coefficient update. This is suitable for real
time applications and is the reason of LMS algorithm
popularity [4].

Data should be converted into binary forms in order to be
processed by digital systems. In fixed-point digital
systems, data problems mainly involve: binary code
representation, limited word-length selection, rounding
and overflow. Rounding and overflow are correlated to
limited word-length.

3-1- Binary code representation

There are several binary code representations. Performa—
nces of one system based on different representations are
different. Subtractions are included in LMS algorithm so
results might be negative. For this reason, data should be
represented as signed binary codes. The most popular
representation of signed binary codes is two’s comple—
ment. Calculations of LMS algorithm are mainly done in
decimals so decimals should be converted into integers
firstly. When initializing weight vector values, initial
values should be the values after conversion.

3-2- Limited word-length selection

In digital systems, every number can be represented by a
binary code in limited word-length, so dynamic range and
precision are finite. For LMS algorithm, the effect of
limited word-length is that it will produce three errors:
quantization errors of input vectors, quantization errors of
weight vectors and quantization errors of calculation [5].

- Natural signals are analog signals that can not be
processed by digital systems. In order to perform this
task, analog signals should be converted into digital
signals by using analog to digital converted into digital
signals by using analog to digital converter (ADC).
Samplings of the ADC are represented in limited word-
length. There are differences between actual values and
values of representations. These differences are quantize—
tion errors of input vectors. Quantization errors can be
reduced by improving the sampling precision of the ADC.
- Initial values of weight vectors also have to be
represented by binary codes. Weight vectors are
quantized according to the limited word-length. Quantiz—
ation errors of weight vectors are produced in this process.
Quantization errors of weight vectors can cause many
problems such as actual results of filters deviate from
theoretic results and so degrading the performance.

- Multiplication is one arithmetic operation in LMS
algorithm. Rounding is needed in multiplication of two
binary numbers with limited word-length. Two binary
numbers that the length of each is N, then the length of
the multiplication will be 2N. The length of the result
should be rounding to N and N bit binary codes should be
discarded. This were called calculation noise, this
problem also is a quantization error. This noise can slow
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down the convergence speed, divergence of weight
vectors and even lead the entire system to be collapsed. In
order to make results more accurate, some measures can
be taken into account. Appropriate algorithm structure
can reduce the word-length effect and appropriate word-
length can reduce the calculation noise. For impleme—
ntation in hardware, long word-length numbers utilizes
more resources than short word-length numbers. Perfor-
mance and resource utilization should be balanced
according to the requirement of the designed system.

3-3- Overflow

Errors can also be produced when overflow happens.
These errors can slow down the convergence speed.
Overflow can be avoided by two methods: extending the
word-length of the accumulator and scaling data before
calculation. The latter can be realized by shifting.

- Extending the word-length of the accumulator. When
the word-length of input vectors and weight vectors is N,
the number range that can be represented is [-2V!, 2N'-1]
if the two’s complement is adopted. The bigger N, the
range will be wider. But big value means more prices.
- Scaling can be realized by shifting operation. Because
the binary codes are the two’s complement, the sign bit
should be settled appropriately. When left shifting, the
sign bit is not changed, others are left shifted. Most
significant bits are discarded and zeros are left shifted in.
When right shifting, the least significant bits are
discarded and sign bit is right shifted in. Final output
results should be de-scaled, that is shifting in reversed
direction [6].

Table (1): Input data bit-allocation
Sign Bit Guard Bits Word Length  Fraction Length
1 3 12 1

Table (2): Weights bit-allocation
SignBit Word Length  Fraction Length
1 1 15

4- Fixed-Point Standard LMS Model

It was considered that we have a 12 bit binary output data
from ADC unit, so the model for input data was designed
as in table (1). The one bit fraction length is actually
dummy and is not used for input/output data, but is
necessary because of weight updates as we see then. For
LMS Weights, the form in table (2) was considered.
According to the LMS output formula:

Y=WU ©)]
The output of LMS (Y) would be 34 bit long. To be in
format of 17 bits long, we truncate Y from 31 down to
15. The formula for updating weights is:

AW =nEU (10)
So the resulting length for W is 51 bits long. Then it is
truncated from 33 down to 17 to fit in the desired format
which is 17 bit long.
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in reference [9]-[10]. This paper can be classified into the
latter.

In this paper we first describe the theory of adaptive
signal processing and LMS algorithms. Then in sections
3 and 4, data entry problems in LMS algorithm and
description of designed fixed-point LMS-based adaptive
noise cancellation core is given respectively. Section 5
shows simulation-implementation results and in section
6, a comparison is made with other works. At last, section
7 describes conclusions from the obtained results.

2- LMS algorithm

Adaptive filters learn the characteristics of their
environment and continually adjust their parameters
accordingly. Because of their ability to perform well in
unknown environments and track statistical time
variations, adaptive filters are employed in a wide area of
fields. The adjustable parameters that are dependent on
the applications are the number of filter taps, selection of
FIR or IIR, choice of training algorithm, and the
convergence speed (learning rate). Beyond these, the
underlying architecture needed for realization is
application independent. The main goal of any filter is to
extract useful information from noisy data. Whereas a
normal fixed filter is designed in advance with
knowledge of the statistics of both the clear signal and the
unwanted noise, the adaptive filter continually adjusts to
a changing environment by the use of recursive
algorithms [2,3]. This is useful when the characteristics
of the signals are not known before of change with time.
The discrete adaptive filter in Fig. (1) receives an input
X(n) and produces an output Y(n) by a convolution with
the filters weights, w(k). A desired reference signal, D(n),
is compared to the output to get an estimation error E(n).
This error signal is used to incrementally adjust the filters
coefficients for the next time instant. Several algorithms
exist for weight update, such as the Least Mean Square
(LMS) and the Recursive Least Squares (RLS) algori—
thms. The selection of algorithm is dependent on required
convergence speed and the computational complexity
available, as statistics of the operating environment.

X(n) Unknown Plant D(n)

Update\

\m Y(n) -/;

E(n)

Fig. (1): Block diagram of adaptive filtering problem

2-1- Adaptive algorithms

There are some methods for performing weight update on
an adaptive filter. There is the Wiener filter, which is the
optimum linear filter in terms of mean squared error, and
several algorithms that try to approximate it, such as the
method of steepest descent. There is also least mean
square algorithm for use in Artificial Neural Networks
(ANN). Finally, there are other techniques such as the
recursive least squares algorithm and the Kalman filter.
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The choice of algorithm is highly dependent on the
signals of interest and the working environment, as well
as the convergence speed required and computation
complexity available.

2-2- Steepest descent method

With the error performance surface defined previously,
one can use the steepest descent method to converge to
the optimal filter weights for a given problem. Since the
gradient of a surface (or hyper surface) points to the
direction of maximum increase, then the opposite
direction of the gradient (-A) will point towards the
minimum point of the surface. One can adaptively obtain
the minimum by updating the weights at each time
interval by using Eq. (1)

W.., =W, +n(-A,) (1)
In which the constant m is the step size (learning rate)

parameter. The step size parameter determines how fast
the algorithm converges to the optimal weights. A
necessary and sufficient condition for the convergence or
stability of the steepest descent algorithm is for m to

satisfy Eq. (2)

n+l

O<n< )
Max
Where A, is the biggest Eigen value of the correlation

matrix R. Although it is still less complex than solving
the Wiener-Hopf equation, the method of steepest descent
is rarely used in practice because of high computation
cost needed. Calculating the gradient at each time interval
will include calculation of P and R, whereas the least
mean square algorithm performs similarly using much
less calculations.

2-3- Least mean square algorithm

The least mean square (LMS) algorithm is similar to
method of steepest descent in that it updates the weights
by iteratively approaching the MSE minimum. Widrow
and Hoff invented this method in 1960 for use in neural
network training. The key is that instead of calculating
the gradient at every time interval, the LMS algorithm
uses a rough approximation of the gradient. The error at
the filter output can be expressed as Eq. (3)

e, =d, —WTu, (3)
This is simply the desired output minus the filter output.
By using this definition for the error, an approximation of
the gradient is found by Eq. (4)

A=-2e,u, C))
Substituting Eq. (4) for the gradient into the weight
update Eq. (1) from steepest descent method gives Eq. (5)
Wi =W, +2neu, (5)
This is the Widrow-Hoff LMS algorithm. As with the
steepest descent algorithm, it can be shown to converge
for values of m less than the reciprocal of A, , but

Ay May be time varying and to avoid computing it,
another criterion Eq. (6) can be used.

0<n< (6)

Max
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Abstract: A hardware implementation of adaptive noise cancellation (ANC) core is proposed. Adaptive filters are
widely used in different applications such as adaptive noise cancellation, prediction, equalization, inverse modeling and
system identification. FIR adaptive filters are mostly used because of their low computation costs and their linear phase.
Least mean squared algorithm (LMS) is used to train FIR adaptive filter weights. Advances in semiconductor
technology especially in digital signal processors (DSP) and field programmable gate arrays (FPGA) with hundreds of
mega hertz in speed, will allow digital designers to embed essential digital signal processing units in small chips. But
designing a synthesizable core on an FPGA is not always as simple as DSP chips due to complexity and limitations of
FPGAs. In this paper we design an LMS-based FIR adaptive filter for adaptive noise cancellation based on VHDL97
hardware description language (HDL) and Xilinx SPARTAN3E (XC3S500E) which utilizes low resources and is high
performance and FPGA-brand independent so can be implemented on different FPGA brands (Xilinx, ALTERA,
ACTEL). Simulations are done in MODELSIM and MATLAB and implementation is done with Xilinx ISE. Finally,

result are compared with other papers for better judgment.

Index Terms: Adaptive noise cancellation core, FPGA, adaptive filters, hardware description language.

1- Introduction

One of the most important branches of signal processing
is adaptive signal processing. The main purpose of adaptive
signal processing is type of systems which are adaptively
changed and self-adjusted. They can improve their perfor—
mance by adaptively learning the characteristics and
modifying their coefficients. Adaptive systems are widely
used in many fields such as communication systems,
channel estimation, equalization, sonar, radar, smart ant—
enna, navigation systems, industrial control, prediction,
system identification and active noise control (ANC)
systems. Adaptive systems play an important role in their
fields. In some cases especially where non-stationary and
time-varying signals are concerned, the importance of
adaptive signal processing is clear [1].

Recently requests for portable and embedded digital
signal processing (DSP) systems have been increased
dramatically. Applications such as audio devices, hearing
aids, cell phones, active noise control systems with
constraints such as speed, area and power consumption
need an implementation by which these constraints are
met with shortest time to market. Some possible solutions
are ASIC chips, general purpose processor (GPP) and
digital signal processor (DSP). Although the first option
can provide a solution to meet hard constraints, it lacks
the flexibility that is available in the two others. Using
field programmable gate arrays (FPGAs) can reduce the

gap between flexibility and high performance. New
FPGAs include many primitives that provide DSP
applications such as embedded multipliers, multiply and
accumulate units (MAC), digital clock management
(DCM), DSP-Blocks, and soft/hard processor cores (such
as PPC). These facilities are embedded in FPGA fabric
and optimized for high performance applications and low
power consumption. The availability of soft/hard proc—
essor cores in new FPGAs allows implementation of DSP
algorithms without difficulty. An alternative choice is to
move some parts of the algorithm into hardware (HW) to
improve performance. This is called HW/SW co-design.
This solution would result in a more efficient implement—
tation as part of the algorithm is accelerated using HW
while the flexibility is maintained. Another more efficient
and more complex choice is to convert the whole
algorithm into hardware as a pure HW implementtation.
Although this is an attractive option under area, speed,
performance and power consumption, the design will be
much more complex [2]. Studies on LMS algorithm
mainly concentrate on two aspects. One is the conver—
gence time from the theoretical perspective; several mod—
ified LMS algorithms were proposed in references [7]-
[8]. The other is hardware implementation, in order to
improve data throughput, many modified architectures for
LMS algorithm such as pipeline technique were proposed
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