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Abstract  
In this paper, a new prognostic index to detect the severity of asthma by processing capnogram signals is presented. 

Previous studies have shown significant correlation between the capnogram and asthmatic patient. However, most of 

them used conventional time-domain methods and based on assumption that the capnogram is a stationary signal. In this 

study, by using linear predictive coding (LPC) coefficients and autoregressive (AR) modelling (Burg method), the 

capnogram signals are processed. Then, a number of six features including α1, and α4 from LPC and power spectral 

density (PSD) parameters through AR modelling are extracted. After that, by means of receiver operating characteristic 

(ROC) curve, the effectiveness of the extracted features to differentiate between asthmatic and nonasthmatic conditions 

is justified. Finally, selected features are used in a Gaussian radial basis function (GRBF) network. The output of this 

network is an integer prognostic index ranging from 1 to 10 (depends on the severity of asthma) with an average good 

detection rate of 90.15% and an error rate of 9.85%. In the other word, based on the results, sensitivity and specificity of 

this algorithm are 93.54% and 98.29%, respectively. This developed algorithm is purposed to provide a fast and low-

cost diagnostic system to help healthcare professional involved in respiratory care as it would be possible to monitor 

severity of asthma automatically and instantaneously. 
 

Index Terms: Asthma, Autoregressive modelling, Capnogram, Linear predictive coding, Radial basis function neural 

network 

  

1. Introduction  

Asthma is a chronic inflammatory disease of the 

bronchial tubes that occurs in about 5% of all people 

and continues to be a significant cause of morbidity 

and mortality [1]. Traditionally, peak flow meter 

and spirometer is used to monitor the asthmatic 

patients which have lots of limitations [2]. 

Nowadays, capnography is a new method used to 

monitor the asthmatic conditions. Unlike traditional 

methods, it is taken while the patient is breathing as 

comfortable as possible without requiring any 

complicated instructions [3]. 

Capnography uses the technology of infrared to 

determine the concentration of carbon dioxide. 

Capnogram is the graphical display of instantaneous 

CO2 concentration (mmHg) versus time (second). It is 

able to show changes in gas exchange of the patients. 

A normal capnogram has four phases and an end-

tidal point, as shown in Fig. (1). Each phase reflects 

the process of CO2 elimination. The flat phase I 

describes early exhalation and as inhalation occurs, 

a near-vertical rapidly falling phase IV is observed. 

In normal ventilation and perfusion, PetCO2 should 

read 2-5 mmHg higher than the PACO2 [4]. 

Nevertheless, a wide range of airway disease can 

lead to incomplete alveolar emptying [5]. 

 
Fig. (1): A normal capnogram 

 

Therefore, the true end tidal point was never 

reached. Fig.2 (b) shows the capnogram of an 

asthmatic patient with an obstruction in some parts 

of the breathing circuit. It should be considered that 

the ascending limb of the capnogram is prolonged 

and is not flat, as it should be normally as shown in 

Fig.2 (a). These changes give rise to the so called 

"shark's fin" morphology capnogram in patients 

with airway obstruction. However, it could be found 

more abnormal capnogram that depending on the 

patient’s condition [6]. 
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Fig. (2): Comparing waveforms: (a) Normal capnogram and (b) Asthmatic capnogram 

  

These variations in capnogram of different diseases 

cause the researchers carry out analysis of this signal 

to differentiate between a range of airway illnesses; 

especially for asthmatic and nonasthmatic conditions 

[7-10]. However, all these previous studies are 

conducted through time domain techniques and 

based on assumption that capnogram is a stationary 

signal. But, according to the new findings, 

capnogram is a wide-sense nonstationary signal [11] 

which means time-varying information is important. 

In this research, features of capnogram are extracted 

to characterize the severity of asthma in patients. 

The linear predictive coding (LPC) coefficients are 

proposed to use because these parameters are 

suitable for capnogram which has slope changes for 

a lot of airway abnormalities. Furthermore, in 

frequency domain, the power spectral density (PSD) 

of the capnogram signals is estimated by using the 

Autoregressive (AR) modeling as a nonstationary 

approach. This then has led to differentiation in 

frequency content of capnogram signal in asthmatic 

and nonasthmatic conditions. It is important to note 

that, till today, no study has been performed to 

analysis capnogram in frequency domain. 

Also, selected features are used as an input vector of 

a Gaussian radial basis function (GRBF) network 

that is designed to automatically cluster and classify 

the patients with different asthmatic severity.  

In this paper, section 2 discusses the methods 

proposed which consists of data acquisition, 

preprocessing, LPC analysis, AR modeling of 

capnogram signals, performance measure, and RBF 

neural networks. It is continued with results and 

discussion at section 3. Lastly, the performance 

evaluation and the conclusion are presented in 

section 4 and 5, respectively. So, this study purposes 

an algorithm to detect severity of asthma based on 

signal processing techniques of capnogram signal, 

and GRBF network. 
 

2. Methods 

This section contains 6 sub-sections which are 

presented accordingly. Fig. (3) shows the block 

diagram of overall steps involved in the proposed 

algorithm. 

The first step is data collection, followed by the 

preprocessing of capnogram signals. Then, the 

features of capnogram signal are extracted using 

LPC analysis and AR modeling in subsections 3 and 

4. It should be noted that the effectiveness of the 

extracted features is validated by using receiver 

operating characteristic (ROC) curve analysis and 

two indices included sensitivity and specificity that 

are often employed in medical applications [12-14]. 

Lastly, selected features are used to design a GRBF 

network to produce a new prognostic index to detect 

the severity of asthma that is presented in subsection 

5. As it has been discussed in section 3, applying 

theses methods on capnogram signals result in 

developing an algorithm to detect severity of asthma 

in patients who suffer from this acute disease. 
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Fig. (3): The overall view of the applied methods 

  

2.1. Data Acquisition 

The capnogram data were collected from patients 

with complaints of asthma and breathing difficulties 

at the Emergency Department of Hospital Pulau 

Pinang. Also, non-asthmatic patients have been 

chosen based on their respiratory disease history and 

respiratory specialist consultation. Also, All subjects 

were non-smoker ones and data has been taken 

while the subject was in sitting position. Informed 

written consent was obtained from the patients 

under permission of National Medical Research 

Section of Ministry of Health Malaysia (MOH) that 

was approved by the ethics committee of Hospital 

Pulau Pinang. 

Fig. (4) shows the block diagram of data collection 

in brief. From this figure, as the first step to collect 

data, the capnography sensor was attached on the 

mouth or nose of the patients. Side-stream 

capnography method was used in the process of data 

collection because this method has higher accuracy 

[15]. After attaching the sensor on the patient’s nose 

or mouth, the continuous capnogram was recorded 

using the capnography patient monitor, 

Capnostream
TM

20 Model CS08798. Then, the 

capnogram data was transferred to a personal 

computer for analysis. Throughout the study, a total 

of 23 nonasthmatic capnogram, and 73 asthmatic 

capnogram were successfully collected from 96 

persons. The capnogram for each patient was 

recorded around five minutes at a sampling 

frequency of 20Hz. Then, a continuous and 

complete part of recorded data with the length of 

five breathing cycles and without any artifact 

(approximately 20 seconds; according to the 

patient’s respiratory rate) was extracted for further 

analysis. 

It should be noted that severity of asthma in patients 

has been assessed using PEFR (Peak expiratory 

flow rate), FEV1 (Forced expiratory volume in 1 

second) and clinical judgment (in some subjects that 

obtaining first two indices were difficult due to 

emergency situations) by the physician and his 

specialist team in the Hospital. Besides, these tests 

have been made in different stages of the acute 

asthmatic attack, i.e. early full symptomatic phases, 

mid-treatment phase after some initial nebulisation, 

and end-treatment phase when the patient is 

symptomatically better and clinically available for 

discharge home. 

 



New Prognostic Index to Detect the Severity of Asthma Automatically…, pp.53-63 

  

56 

 
Fig. (4): The block diagram of data collection in brief 

 

2.2 Preprocessing 

Data preprocessing was carried out to eliminate 

unnecessary noise in the recorded capnogram 

signals. In this paper, the moving average filtering 

method was used to smooth the curve due to its 

simplicity and efficiency, especially for eliminating 

the high frequency noises within the signals [16]. 

This method smoothes data by replacing each data 

point with the average of neighboring data points 

defined within a specific span. This process is 

equivalent to lowpass filtering with the response of 

the smoothing given by the difference equation as 

follow: 

( ) )12/()(...)1()( +−++−+++= NNiyNiyNiyys     (1) 

where ys(i)  is the smoothed value for the ith data 

point, N is the number of neighboring data points on 

either side of ys(i), and 2N+1 is the span. Indeed, the 

span defines a window that moves across the data 

set as the smoothed response value is calculated for 

each predictor value. A large span increases the 

smoothness but decreases the resolution of the 

smoothed data set, while a small span decreases the 

smoothness but increases the resolution of the 

smoothed data set [17]. The optimal span value 

depends on the data set and usually requires some 

trial and error to determine [18]. In this study, we 

used the span as 13, because it produced the best 

results for both smoothness and resolution. 

Furthermore, the correlation coefficients calculated 

for each signal after filtering justified this span 

width. Fig.5 shows the correlation coefficients for 

some of capnogram signals after filtering with use 

of different spans. This figure shows the similarity 

of signal with itself after and before filtering, and 

shows that with selecting the span as 13, this 

similarity is maximum value and is near 1, that 

approves selecting 13 for span is a good choice. It 

should be noted that this correlation coefficient for 

all signals, before and after filtering, has been 

calculated and the results were same, but only some 

of them are presented in this figure. 

Let the patient seat in comfort and be relaxed 

Attaching sensor on the patient’s nose or mouth 

Starting to record capnogram signal at least five minutes 

Checking the recorded data to select a continuous and complete part with 

the length of five breathing cycles and without any artefact 

Transferring the recorded data to the PC for further analysis 

The approximately 5 minutes recorded data 

Selected part 
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Fig. (5): The correlation coefficients of some capnogram signals after filtering with different spans 

 

2.3 LPC Analysis 
LPC is a method to model the signal source through 

observation of input and output sample sequences. 

The basic concept of LPC analysis is to estimate a 

functional set of component coefficients which 

represent the behavior of a system where each 

expression sample is approximated as a combination 

of past samples [19], i.e. for a signal sample x(n) is: 

∑ =
−=

p

k k knxnx
1

)()( α  (2) 

where αk and p are LPC coefficients and order, 

respectively. 

The aim of the LPC analysis is estimating the best 

prediction coefficients αk through the number of n 

data samples and put the order p of the required 

predictor (normally n>>p), so that the predicted 

expression sample is the best approximation of the 

original expression sample [20]. The least-squares 

minimization method based on minimizing the mean 

energy in the expression variation over n expression 

samples of the dataset is used to calculate the 

predictor coefficients. This process leads to a system 

of p equations with p unknowns which should be 

solved to find the best fitting predictor coefficients 

[21]. 

There are a number of approaches to solve these 

linear equations. The most common one is the 

covariance method which is the efficient linear 

prediction for spectral estimation techniques and is 

appropriate to estimate coefficients from a sample of 

a nonstationary signal [22].  
 

2.4. AR Modelling 

Autoregressive (AR) models are widely used for 

power spectral density (PSD) estimation [23]. The 

AR model of a time series is represented in the 

following form: 

∑ =
+−−=

P

1m
)n(e)mn(x)m(a)n(x

  (3) 

where x(n) is the time series, a(m) are AR 

parameters, P is the model order, and e(n) is the 

prediction error. 

A variety of AR models are currently used to 

estimate the PSD of biomedical signals. The Burg 

method was selected because, as shown in equations 

(5) and (6), it estimates the reflection coefficients, 

but other methods such as autocorrelation approach, 

use prediction coefficients for the AR process. So, 

in comparison with other approaches such as 

autocorrelation, covariance, modified covariance, 

and recursive least squares (RLS), this method does 

not require run-off of the data sequence by zero 

padding and has minimal phase characteristic with 

high accuracy [24]. 

The minimization criteria of the Burg method are 

obtained by minimizing the sum-squared of the 

forward and backward prediction errors as follows: 

[ ] min)n(e)n(e
1N

Pn

2b

p

2f

p =+=ε ∑
−

=   (4) 

where ef
p(n) is the forward prediction error at the pth 

stage, e
b

p(n) is the backward prediction error at the 

pth stage, N is the total number of data points, and P 

represents the model order. 

Burg minimized the performance index with respect 

to the reflection coefficients as follows: 
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  (5) 

where γp are the reflection coefficients. Then, the 

forward and backward prediction errors can be 

calculated by using lattice filters, and as a result the 

reflection coefficients γp can be obtained as follow: 
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One of the crucial parts for the AR method is the 

selection of appropriate value for the model order P. 

In spectral estimation, the accuracy of the estimated 

spectrum is critically dependent on the model order 

that is chosen. It means that a too low model order 

can generate an over smoothed spectrum, whereas 

too high a value of order may introduce spurious 

details such as false peaks into spectrum [25].  

The model order can be estimated using the Akaike 

information criterion (AIC) which is one of the 

popular methods to establish an optimum model 

order and minimize the information entropy of the 

signal identified as follows [26]: 

P2)Eln(N)p(AIC p +=
  (7) 

where EP, P, and N individually represent the 

estimation of mean-squared error, the order of the 

filter, and the number of input signal samples. 

In this study, the AIC for different model orders were 

calculated. Based on the results, at P=10 the AIC 

value (-4.4) was smallest compared to the other 

number of P. So, the model order 10 was selected 

since the minimum of error variance was observed 

at this value of P. 

2.5. GRBF Neural Networks 
A radial basis network is a feed-forward neural 

network using the radial basis activation function. 

An RBF network generally consists of two weight 

layers; the hidden layer and the output layer, which 

can be described as follows [27]: 

∑ =
−+= hn

1i ii0 )cX(fwwy
   (8) 

where f are the radial basis functions, wi are the 

output layer weights, w0 is the output offset, X are 

inputs to the network, ci are the centers associated 

with the basis functions, and nh is the number of 

basis functions in the network. Furthermore, the || . || 

denotes the Euclidean norm that measures the size 

of the vector in a general sense and is defined as: 

( ) ]x,...,x[X,)XX(xX n1

2/1
2/1n

1i

2

i
′=′== ∑ =   (9) 

The nonlinear basis function, f, can be formed using 

a number of different functions that the most 

common choice is the Gaussian function [28]. The 

GRBF network can be written using conventional 

time series notation as: 

W)t(Z)t(y ′=  (10) 

where W is the output layer weight vector and Z(t) is 

the basis function output vector at time t given, 

respectively, by: 

( ) ])t(x),...,t(x[)t(X,r/c)t(Xexp)t(z

])t(z),...,t(z,1[Z

]w,...,w,w[W

h

h
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2
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2
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n1

n10

′=−−=

′=

′=

(11) 

where ci and ri are ith basis function centre vector 

and  ith basis function width, respectively, and X(t) 

is input vector. 
 

3 Results and Discussion  
In this section, the results of LPC analysis, the 

estimated PSD using AR modeling-Burg method, 

and the new prognostic index produced by using 

GRBF network are thoroughly presented and 

discussed in section 3.1, 3.2 and 3.3 accordingly. 

 

3.1 LPC Analysis Results 
For this analysis, we use LPC with order 8 (p = 8) 

because capnogram is related to breath. The average 

respiratory rate reported in a healthy adult at rest is 

usually given as 12 breaths per minute, but 

estimates do vary between sources, although 

according to be healthy, unhealthy, and age it could 

change. However totally it is between 12 to 50 

breaths per minute [29], therefore, it has low 

frequency range, and using LPC with order 8 is 

suitable. Fig.6 shows the correlation coefficients 

between the original signal and estimated signals 

using different LPC orders. 

As it can observed from this figure, LPC with order 

8 has best correlation coefficient rather than other 

orders, so this order was chosen for this analysis. 

Table 1 shows the sensitivity, specificity, AUC, and 

P-Value for LPC coefficients. In general, for almost 

all coefficients, sensitivity and specificity is good. 
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Fig. (6): Correlation coefficients between the original capnogram signal and estimated 

signals using different LPC orders 

 

Table (1): The performance indices for extracted LPC coefficients 

LPC 

Coefficients 
Sensitivity Specificity AUC p-value 

α1 93.55 94.74 0.706 0.0073 

α2 74.19 78.95 0.601 0.214 

α3 70.97 73.68 0.545 0.5899 

α4 96.77 95.63 0.723 0.0019 

α5 87.1 84.21 0.657 0.0762 

α6 71.87 63.16 0.615 0.209 

α7 68.42 51.61 0.557 0.536 

α8 83.87 80.91 0.637 0.0933 

 

Although, α 1, and α 4 have the highest sensitivity 

(93.55, and 96.77, respectively) and specificity 

(94.74, and 95.63, respectively) that could be 

concluded these two coefficients can accurately 

differentiate asthmatic and non-asthmatic patients. 

Moreover, all coefficients have AUC > 0.6 and p 

value <0.2. This shows that almost all of them are 

able to differentiate the asthmatic and the non-

asthmatic conditions. However, it can be seen from 

Table 1 that, α 1, and α 4 have significant AUC and 

p-value which is efficient to group the capnogram 

data into two significant groups which are asthmatic 

and non-asthmatic patients.  

3.2 AR Modelling-Burg Method Results 
Fig.7 and Fig.8 show the PSD estimation of a 

nonasthmatic capnogram (CNP2) and an asthmatic 

capnogram (CAP9) by using Burg method of AR 

modeling. 
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Fig. (7): Power spectral density of a nonasthmatic capnogram (CNP2) 

 

 
Fig. (8): Power spectral density of an asthmatic capnogram (CAP9) 

 

As shown in Fig.7 and Fig.8, and according to the 

results for all data, the PSD estimation of the 

nonasthmatic capnogram signals (CNPs) consists of 

one component, while for asthmatic capnogram 

signals (CAPs), this estimation produced two 

components. Hence by using the second component 

in PSD estimation using Burg method, asthmatic 

and nonasthmatic conditions can be differentiated 

without errors. Also, the mean of frequency of the 

first component, and the total power of the PSD 

estimation for asthmatic capnogram were 0.02 Hz 

(with a standard deviation of 0.006 Hz) and 0.195, 

respectively, whereas, these values for non-

asthmatic capnogram were 0.011 Hz (with a 

standard deviation of 0.003 Hz) and 0.354, 

respectively. Table 2 shows performance indices for 

the frequency of the first component, its magnitude, 

and the total power in the PSD estimation of the 

CAPs and CNPs. 

 

Table (2): AUC and p-value for the frequency of the first component and total power in the PSD estimation of CNPs, and CAPs 

Performance 

index 

Frequency of the First 

Component (Hz) 

Magnitude of the First 

Component (Normalized) 
Total Power 

Sensitivity 98.23 98.3 83.87 

Specificity 95.08 93.8 84.21 

AUC 0.996 0.97 0.722 

p-value <0.0001 <0.0001 0.0023  
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According to the Table (2), all features have AUC > 

0.7 and p-value < 0.003. This indicated that all 

parameters in the PSD distribution of CAPs and 

CNPs are functional in differentiating the asthmatic 

and nonasthmatic conditions. However, it is obvious 

that the first component frequency and its 

magnitude have noticeable AUC and p-value, 

accompanied by high sensitivity and specificity, 

which is efficient to classify the capnogram signals 

in two groups. As a result, these parameters and the 

frequency of the second component (that only exist 

in PSD of asthmatic patients) can significantly 

differentiate the asthmatic severity conditions. 

The bottom line is that, the frequency of the second 

component of the asthmatic capnograms PSD 

estimation varied in patients with different levels of 

asthmatic severity. It means that, the average of this 

value for the very low, low, mild, and serious 

asthmatic capnograms was 0.18 Hz, 0.25 Hz, 0.43 

Hz, and 0.6 Hz, respectively. Also, the standard 

deviation related to each category was 0.02 Hz, 0.06 

Hz, 0.05 Hz, and 0.1 Hz. So, this parameter has been 

selected as one of the features to carry out this study.  
 

3.3. New Prognostic Index by Using GRBF 
Based on the results obtained, our feature vector 

consists of six elements. These are α 1, and α 4 from 

LPC analysis, the number of frequency components, 

magnitude of the first component, and the frequency 

of the first and second components in PSD 

estimation by AR modeling-Burg method.  

First of all, our database has been divided into two 

different sets in which one is used for training phase 

and the other one is used for testing phase. The 

training set has one additional element in feature 

vector. This element is the level of severity as 

indicated by physician who examined our patients. 

It is represented by a number from one to ten for a 

nonasthmatic patient to a patient, who suffers from 

very severe asthma, respectively, that is the main 

goal of this research. 

Before designing the RBF network for the application 

of the data, as mentioned in previous sections, it 

needs to be considered that the design of RBF 

networks consists of two important parts; network 

construction, and parameter adjustment. Like any 

other nonlinear network, RBF networks face the 

same controversy in choosing the number of RBF 

units. It means that too few RBF units cannot get 

acceptable approximations, while too many RBF 

units lead to expensive computation and may cause 

over-fitting problem [30]. In this research, the process 

of training was stopped when the number of RBF 

units was equal to thirty, or the program reached the 

mean squared error (MSE). This limit for RBF units 

was selected in order to get the best and most 

accurate results from the designed GRBF network 

for this study. 

Based on the results, after thirty training epochs, the 

GRBF network reached the desire MSE. After the 

training phase, the GRBF network has been loaded 

with the test datasets. The output of this network is 

an integer prognostic index ranging from 1 to 10 

(depends on the severity of asthma) with an average 

good detection rate of 90.15% and an error rate of 

9.85%. Table (3) shows the detection rate of the 

RBF network output in more detail.  

The bottom line is that, only a total of 6.46% of 

asthmatic patients’ capnogram were detected as 

non-asthmatic ones and rest of error rates were due 

to put some asthmatic patients’ capnogram in wrong 

severity level category, e.g. one of the CAPs has 

been for a patient who suffer from a mild asthma, 

but is detected as low asthma by the RBF network. 

So, it can be considered that the sensitivity of our 

method is 93.54%. Also, it should be noted that an 

increase in the number of samples to train the RBF 

network will produce more accurate results 

(especially for the severe and very severe categories 

that the RBF network produces poor results since 

the lack of samples for testing and training phases).  

Consequently, the defined index can be used in 

capnography to detect the severity of asthma in 

patient with respiratory difficulties with good 

accuracy and also as an online system. 

 

 

Table (3): The detection rate of RBF network output in detail 

Detection 

rate index 

Asthmatic patients with various severity level 
Detection 

rate index 

Non-asthmatic 

patients 
Very 

Low 
Low Mild Severe 

Very 

Severe 

TP (%) 96.66 95.85 94.89 80.25 75 TN (%) 98.29 

FN (%) 3.34 4.15 5.11 19.75 25 FP (%) 1.71 

 

4. Performance Evaluation  

In this research a new approach to monitor asthmatic 

patients and to detect the severity of asthma based 

on signal processing techniques of capnogram is 

presented. In this section, the performance of our 

proposed method is compared with two existing 

algorithms which are "S" parameters [7], and a 

recently introduced one using Hjorth parameters [10].  

First of all, according to the presented algorithms in 

their researches, the capnogram signals were 

separated into equal segments to calculate related 

"S" parameters and Hjorth parameters (for both 
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whole cycle of capnogram for one breath cycle, and 

the range of capnogram that is limited between the 

time at beginning of S1 and time at the end tidal 

peak) for each cycle. This is the first step to evaluate 

the performance of these methods on our database.  

For this purpose, according to the respiratory rate of 

each patient, every sample was divided into 5 

segments, taking effort that each segment contained 

one complete breath cycle. Then, "S" parameters 

including S1, S2 and SR (based on You et al study 

results) and Hjorth parameters were calculated for 

each cycle. Table (4) shows the performance indices 

of these methods. 

 

 

Table (4): The performance indices of presented method in this research in comparison with two existing algorithms 

Performance 

Indices 

‘S’ Parameters 

Method 

Hjorth 

Parameters 

Method 

Presented 

Algorithm in This 

Thesis 

Sensitivity (%) 71.32 88.2 93.54 

Specificity (%)  72.75 81.74 98.29 

 

As can be seen in Table 4, our presented method has 

better sensitivity and specificity (93.54% and 

98.29%, respectively) in comparison with the two 

existing approaches. Also, the Hjorth parameters 

method with 88.2% sensitivity and 81.47% 

specificity has better performance than "S" 

parameters approach that could be mostly due to the 

former algorithm considers the whole parts of 

capnogram signal to analyze, but the latter algorithm 

only calculates some indices and slopes of 

capnogram signal. It should be noted that the 

reported values for "S" parameters method in Table 

4 is combination of three extracted indices. 

The first and foremost difference between this 

research and the existing algorithms is that in this 

study, it has been approved that the capnogram 

signal is in category of the wide-sense non-

stationary signals, so more than one cycle of this 

signal is analyzed whereas both the existing 

algorithms were based on the non-approved fact that 

capnogram is a stationary signal and only one cycle 

of capnogram signal was investigated. So, this 

hypothesis not only limited them to use some 

conventional time-domain methods, but also the 

frequency contents of capnogram were ignored. 

Therefore, in this study, non-stationary techniques 

included LPC and AR modeling are used to process 

capnogram signals in time-domain and to estimate 

the power spectral density of capnogram signals, 

respectively. Furthermore, in contrast with existing 

methods that their results were aimed at 

differentiating asthmatic and non-asthmatic 

conditions, in this study, a new prognostic index is 

introduced to not only differentiate the asthmatic 

and non-asthmatic conditions, but also to detect the 

severity of asthma in patients. 

In a nutshell, our results show that the presented 

method in this research has better performance in 

comparison with existing methods in monitoring 

asthmatic patients and in detecting asthmatic and 

nonasthmatic patients as well as differentiating 

asthmatic patients with various levels of severity. 
 

5. Conclusions  
Capnogram is a vital representation of the respiratory 

system. Therefore, the analysis of this physiological 

signal could lead to the development of computerized 

methods to differentiate airway disorders, which 

could benefit both the healthcare professional 

involved in respiratory care and the patients. 

Previous studies conducted for capnogram signal 

analysis used only conventional time domain 

methods. In this paper, for the first time, frequency 

contents of capnogram signals have been 

investigated. 

The results showed that by using these properties, 

asthmatic and nonasthmatic conditions can be 

differentiated. Also, by the incorporation of a GRBF 

neural network, the severity of asthma in the patients 

could be automatically assessed as a new index in 

capnographs. This method is an innovative idea that 

could further assist the medical practitioners as it 

would be possible to monitor severity of asthma 

automatically and instant-aneously with minimum 

human errors.  
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