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Abstract: In this paper, the control problem is investigated for Jerk chaotic systems against unknown
parameters, actuator faults and input saturation. The considered actuator fault covers both of the stuck faults
and loss of effectiveness faults in actuators. The values, times and patterns of the considered faults are
completely unknown. That is, during the system operation it is unknown when, by how much and which
actuators fail. A robust adaptive controller is presented based on the backstepping design method to achieve
complete synchronization of the identical Jerk chaotic systems. By introducing the new Lyapunov functions,
it is proved that all the closed loop signals are bounded and the tracking error converges to a small
neighborhood of the origin. The proposed adaptive method compensates the actuator faults without any need

for explicit fault detection. Simulation results represent that the designed controller can synchronize the
identical chaotic systems in the presence of actuator fault, input saturation and unknown parameters.

Index Terms: Input Saturation, Chaotic systems, Actuator fault, Adaptive control, Backstepping control
method.
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1. Introduction

Chaos behaviour is a nonlinear performance of the
complex nonlinear dynamical systems which is
highly dependent on the initial conditions. The
chaotic systems topic is an area of research that has
attracted considerable attention in various fields such
as information processing systems, secure
communications, chemical and biological drew [1-9].
So far, varieties of control approaches have been
developed for chaotic systems [10-17]. In [12], an
adaptive feedback control scheme was provided for
synchronization of the chaotic systems. The
considered system in [12] was of a Vanderpol oscil-
lator that is coupled to the linear oscillators with
cubic term. The parameters of the master system in
[13] were unknown and different from those of the
slave system. In [14], an adaptive controller was
presented for synchronization between two different
chaotic systems with uncertainties, external disturb-
ances, unknown parameters and input nonlinearities.
In [15], an adaptive backstepping controller was
designed to achieve complete chaos synchronization
of the identical novel Jerk chaotic systems with
unknown system parameters. In [16], a robust ada-
ptive sliding mode controller was proposed to realize
chaos synchronization between two different chaotic
systems with uncertainties, external disturbances and
unknown parameters. In [17], a sliding mode synch-
ronization controller was presented for two chaotic
systems by using radial basis function (RBF) neural
networks. In [17], neural networks have been used to
estimate the uncertainties of the considered system.
An important issue that recently has attracted consi-
derable attention in the chaotic systems is the
occurrence of faults. Faults often cause undesired
system behaviour and sometimes, lead to instability.
Indeed, fault is a deviation of the system structure or
the system parameters from the nominal situation.
Faults can occur due to the locking of an actuator, the
loss of effectiveness in sensors or actuators and the
disconnections of the system components. However,
actuator faults are more serious than sensors or other
components faults, because actuator faults could
reduce some percentage or total of the control input
effectiveness and lead to instability or even catastro-
phic accidents [18]. Until now, many researchhers
have considered the actuator fault control problem in
linear and nonlinear systems [19-30]. In [21], a direct
adaptive control scheme was developed to solve the
robust fault tolerant control problem for linear
systems with mismatched parameter uncertainties,
disturbances and actuator faults including loss of
effectiveness, outage and stuck. In [22], an indirect
adaptive state feedback control scheme was
developed to solve the robust fault tolerant control
design for linear time-invariant systems against
actuator fault and perturbation. In [23], an adaptive
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control approach was developed to control a class of
multi-input multi-output (MIMO) nonlinear systems
in the presence of uncertain actuators faults. In [24],
an adaptive controller was investigated for a class of
MIMO nonlinear systems with unknown parameters,
bounded time delays and in the presence of unknown
time varying actuator failures. In [25], a robust
adaptive control approach was presented based on the
linear matrix inequality (LMI) approach and adaptive
method to deal with the problem of flight tracking
control problem in the presence of actuator faults. In
[26], a fuzzy adaptive actuator fault compensation
controller was presented for a class of uncertain
stochastic nonlinear systems in the strict-feedback
form. In [27], a class of unknown nonlinear systems
was studied in the presence of uncertain actuator
faults and external disturbances. The uncertainties of
the considered system in [27] were approximated
with the help of fuzzy approximation theory. In [28],
a state feedback adaptive controller was presented for
a class of parametric-strict-feedback nonlinear syste-
ms with multiple bounded timevarying state delays
and in the presence of time varying actuator failures.
In [29], an adaptive decentralized dynamic surface
control (DSC) approach was proposed for a class of
large-scale nonlinear systems with unknown nonlin-
ear functions, unknown control gains, time varying
delays and in the presence of unknown actuator
failures. In [30], an adaptive DSC approach was
developed for a class of MIMO nonlinear systems
with unknown nonlinearrities, bounded time varying
state delays, and in the presence of time varying
actuator failures.

Furthermore, input saturation is another issue that is
frequently encountered in many practical systems.
Saturation is a potential problem for actuators of
control systems. It severely limits system perfor-
mance, giving rise to undesirable inaccuracy or
leading instability. The development of adaptive
control schemes for systems with input saturation has
been a task of major practical interest as well as
theoretical significance. So far, considerable atention
has been devoted to the control of systems in the
presence of input saturation [31-40]. In [31], a model
reference adaptive control technique was used for
linear plants in the presence of constraints on the
input amplitude. In [32], an adaptive predictive regu-
lator was proposed of single-input single-output
(SISO) linear plants subject to saturations on both the
control variable. In [33], an indirect adaptive regula-
tor was presented for a class of linear systems in the
presence of input saturation constraints and param-
etric uncertainties. In [34], a robust adaptive control-
ler has been expressed for a class of nonlinear sys-
tems with unknown backlash-like hysteresis. In [35],
an adaptive backstepping controller was designed for
systems with unknown high-frequency gain. In [36],
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a decentralized adaptive neural control approach is
presented for a class of interconnected large-scale
nonlinear time-delay systems with input saturation.
In [37], a direct adaptive fuzzy control scheme is
proposed for uncertain nonlinear systems in the
presence of input saturation. In [38], an adaptive
tracking control is designed for a class of uncertain
MIMO nonlinear systems with non-symmetric input
constraints. In [39], an adaptive prescribed
performance output feedback control scheme is
proposed for a class of switched nonlinear systems
with input saturation. In [40], a distributed neuro-
adaptive control approach 1is developed for
synchronisation of leader—follower multi-agent
systems with non-linear dynamics in non-strict-
feedback form in the presence of input saturation.

In this paper, a robust adaptive control approach is
proposed for synchronization of the Jerk chaotic
systems in the presence of unknown parameters,
unknown actuator faults and input saturation. With
the error between the control input and saturated
input as the input of the constructed system, a number
of signals are generated to compensate the effect of
saturation problem. By the proposed adaptive
backstepping design method, the tracking error is
shown to approach to a signal generated by the
constructed system. Also, the proposed adaptive
method can compensate a large class of actuator
faults without any need for explicit fault detection.
The considered faults are modelled to cover loss of
effectiveness faults as well as stuck at some unknown
values. The wvalues, times and patterns of the
considered faults are unknown, that is, during the
system operation it is unknown when, by how much,
and which actuators fail. Compared with the existing
results, the main contributions of this paper are as
follows:

(1) The control problem is investigated for Jerk
chaotic nonlinear systems with unknown parameters.
(i1) The proposed controller is designed in the
presence of actuator faults and input saturation.

(iii)  The considered actuator fault model can
cover stuck faults as well as loss of effectiveness
faults.

(iv) Appropriate  Lyapunov-Krasovskii  type
functionals are introduced to design new adaptive
laws to compensate the unknown actuator faults and
saturation outcomes.

v) The proposed method proves that without the
need for explicit fault detection, not only are all the
signals in the closed loop system bounded, but also
the tracking error converges to a small
neighbourhood of the origin.

The paper is organized as follows. In section 2, the
system description is given along with the necessary
assumptions. In section 3, design and stability
analysis of the proposed controller is presented. In
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section 4, simulation examples are studied to
illustrate the effectiveness of the proposed control
scheme. Finally, the paper closes with some
conclusions in section 5.

2. Problem Information

The master system, is considered as the following 3-

D novel Jerk chaotic system
X, =X,
X, =X, (D

X; =5-a(x, +x;)+b(x,x,) —exp(x,)

Where x4, x5, X3€ R are the states of the system, @ and

b are unknown constant parameters.

The slave system is considered as the following 3-D

novel Jerk chaotic system:

V1=V
Y2 =Y3 2)
V3 =5—a(y; +y3) + b(y1y2) —exp(yy
where
m
u@) = ) (o) G)
i=1

And y4, y,, y3€ Rare the states of the system, u € R™

is the control input.

The synchronization errors are defined as follows:
€1 =Y1— X1
{ez =Y2— X

€3 =Y3 — X3 @
The error dynamics is obtained as
é1 = e2
€, =e3 (5)

é3 = —a(e, +e3) +b(ejey) —exp(y,) +
In addition u(v(f)) eR™denotes the plant input subject
to saturation which is described by:

sign(upy,lvi| = upy;
ul(vz) - Sat(vz) - { vilvil < uMi (6)
Where u,,is the saturation bound of u; (v;)(?).
The error of adaptive parameters is obtained as
at)=a—32a
{B t=b-b @

The control objective is to design an adaptive
controller for plant (6) in order to assure that all the
closed loop signals are bounded and the tracking
error converges to a small neighbourhood of the
origin despite the presence of unknown plant
parameters, actuator faults and input saturation. For
this purpose, the following assumptions are
considered.

To formulate the reliable control problem, the
following actuator fault model is considered:

m

HOEDYAC

i=1

®)

where
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v (£) = (1 —p)v; (1) ©)
O<pispi=pi

Where p;is an unknown constant and v (t)
represents the signal from the ith actuator that may

fail. In the considered fault mode, p; and p;represent

the lower and upper bounds of p;, respectively. Note
that, when p; = p; = 0, there is no fault in the ith

actuator and when p; = p; = 1, the ith actuator u; is
outage. When 0 < p; < p; < 1, the actuator loses

some fraction of its effectiveness.

Assumption 1. For plant (5) with known plant
parameters and fault parameters, if any up to m -1
actuators outage as (9), the others may lose
effectiveness; the closed loop system can still be
driven to achieve a desired control objective.

3. Control design
In order to compensate the effect of the saturation, the
following system is constructed to generate signals

M) =[A ..., 43]" such that
21 = Az — Clll
)'{2 = /13 - C2/12 (10)

23 = —Cglg + Au
where c¢; are positive constants and Au= u(v) — vF.
Thus, the following change of coordinates has been
made.

Zi =€ —0ap-1 — Ai i= 1,2,3 (11)

where a;_4is the virtual control at the ith step to be

determined. Thus virtual control law ¢; is designed as
a, = —cie;

{az = —c2(ez —aq) + as(ey, €2) (12)
The loss of effectiveness model of actuator fault to be
considered is modelled as

vi () = (1 = p)i(t) (13)
For unknown actuator faults, the adaptive control
input becomes as:
vE(t) = (1 —p)(kuve + kiz) 5 i=12,..,m (14)
where p;is an unknown constant and v/ (t)represents
the signal from the ith actuator that has been failed
and v is the nominal control to be designed later and
where k;jand kjare the estimates of k;jand kyp
where ki1 € R and k;; € R are some constant
parameters which satisfy
{ (1= pdkiy =1 (15)

i21(1 = pdkiz =0
In the following, the backstepping design method is
explained. The design procedure is explained in the
following three steps.
* Step I: The z; subsystem is considered as

Zl = él - )'{1 (16)
Therefore
Z1 =2 — 17 (17)
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wherec; > 1/2 is a positive design parameter. A
positive Lyapunov function V; (t) is defined as

2

V1 2521 (18)

Then by using (12) and (17), the time derivative of
V1 (t) satifies
Vi=2% =22
1
— C1Z12 ( 9)

By using the Young’s inequality, the time derivative
of V; (t)becomes

Vi < —cz? + %212 + %222 (20)
Thus

- _ 1 1

o <-5(222)+323 1)

Eventually, the time derivative of V;(t) becomes

Vi <—-aVi+w (22)
wherey; = %Z% and ¢; =2¢;, —1>0.
* Step 2: The z,subsystem is considered as

Z; =€;—a1 — /12 (23)
Therefore

Zy =23 = C2Zp (24)

wherec, > 1 is a positive constant. A Lyapunov
function V,(t) is defined as:
1
Vz =V1+§Z22 (25)

By using (12) and (24), the time derivative of
V, (t)becomes

Vy, =22, + 2,2, = 2,2, — 2} + 2,23 — 22 (26)
By using the Young’s inequality, the time derivative
of V,(t) becomes

V, < —c 7% +%212 +§222 — 72 +%222 +%z§ (27)
Consequently,
(28)

Eventually, the time derivative of V,(t) becomes

i, 1,1,
V, < —01(521) _02(522) t5%

V, < =V + 1y (29)
where p, = %Z% , Cp=2c;,—2>0 and
¢y=min{c;, C, }.

* Step 3: The z3 subsystem is considered as
2y =63 — 0y — A3 (30)

Consequently,

z3 = —a(e; + e3) + b(y1y, — x1x2) —exp(y1) +
exp(xy) +vF + (Z?=1 gjej) — C3Z3 (1)
where
g1 = C1C2C3
gz = C1C3 + c1¢5 + 3¢5 (32)

g3 = C1 + C2 + C3
in which c; > 1/2 is a positive constant.
The positive Lyapunov function V3(t) is defined as
Vs =Vy 4322 +5a% +5b7 + (5231, 5,%) +

2 22j=1

1 =T 15
Grmia-po ki k) (33)
Then by using (12) and (31), the time derivative of
V3 (t)satisfies
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V3—V2+2323—aa—5l3 (Zi=1g]g\])_

(Zm,(1 - p) (ki 7'k (34)
where
gj = —ﬁj
i=—a
b=-b (35)
ki = —k;
Thus

Vg = Z1Zyp — C1Z12 + ZyZ3 — C2Z22 + Z3 [—a(ez +
e3) + b(y1y2 — x1x2) — exp(yy) + exp(xy) +
er,a- Pz)(knvo + kzz)) + (Z, 19161)
C323] — aa — bb — (Zj:l gjgj) - (Zi:l(l -

) (EiT[E_liei))
The updating laws are selected as:
9; = ejz3 — 0;3;
ad=—(e,+ e3)zz —ad
b= —(y1y, — x1%,)z3 — Bb
IAc = (- 1)zn[v0 11" — o;k;)
where I[; > 0 and 0j, j=1,2,3,0;, i=1,.
are small positive constants
Therefore, the adaptive controller is selected as

vy = (e, +e3) — b(y1y, — x1%,) + exp(yy) —
exp(xy) — Z?=1 gje (38)
Therefore, the time derivative of V3(¢f) becomes as
follows:

Vs =212, — 122 + Zp23 — €322 — c37% +
zz[—ale; + e3) + b(y1y, — x1x2) — exp(yy) +
exp(xy) + (Z?=1 gjej) +a(e; +e3) — by, —
x1x2) + exp(y1) — exp(x;) — (Z?=1 gjej) —
(@ = p)(kigvo + kiz)] — a(—(ep + e3)z3 —
ad) — E(—()’ﬁ’z — X1X3)Z3 — /35) -

(Z?=1 gj(ejzz — Ujﬁj) - uit, (1=

(36)

(37

.,m, @ and 8

p) (R [ L (= Dza[ve 17 — 0ik)) (39)
Where

Y- p)(kivo + Eiz) =i, (11—

p) (ki vp + kiz) — X724 (1 — p) (kiyvo + kip) =
v — Xty (1 = p) (kirvo + ki) (40)

Thus, the time derivative of V3(t)becomes
V3 = Z1Zyp — C1Z12 + ZyZ3 — C2Z22 - C3Z§ + add +

BB + (%321 03;6;) + (Sl 6k kD)) (@)
where
6 = (1 —p)o; (42)
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Therefore, the time derivative of V5(t)becomes

Vg =Z1Zyp — C1Z12 + ZyZ3 — C2Z22 - C3Z§ + a&(a -
@) +Bb(b — b) + (T3_10;9;(g; — §))) +

T -
(., (ki (i — Kp)) 43)
By using the Young’s inequalities, the time

derivative of V3(t)becomes as follows:

V3 ~2 ﬁbz
) - (GZm, 6ik; ki)

b2 ( 0(g0) + (3 =1éikfki) (44)
Eventually, the time derivative of V;(t)becomes
Where

¢
1 . T
(gzﬁﬂfiki ki)
53 = 2C3 —-1>0 )
ég = min{c’l,c_z,c_g,a,ﬁ,aj,éi}

Z_ ¢ é__
32

+

31019 +
(45)

The result of the proposed method is expressed in the
form of the following theorem.

Theorem 1.Consider the closed loop system (5).
Under assumption 1, the controller structure (14)
with the parameter updating laws (37), assures that
all the closed loop signals are globally bounded and
the signal z(¢) = [z1, z2, z3] converges to the following

compact set.
2
o= {[ofpn= )
Where ¢ = min{¢;, &, &3} and = Y3, ;.
Proof: The following Lyapunov function
onsidered

VZV

Where V i (t) fori=1,2,3 are defined in (18), (25) and
(33). Therefore, the time derivative of V(¢) becomes
V<—cV+u

u

V< [V(o) - %] et 4

lzll < 46)

is

Il < [2([v () - Ele-et + %)

Thus it can be concluded that ¥(¢) is bounded,
accordingly all the closed loop signals are bounded
and the signal z(f) =[zi,z2,z3] converges to the
compact setdefined in (46). Thus, the synchronization
error converges to a small neighbourhood of the
origin.

Block diagram of the proposed approach is given in
Fig.1.
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Master Error Adaptive laws
system x(t) _O—} dynamics > for 4, b, I}i,gj > Eu(t1)4 “(t)' Slage syzstem
Eq. (1) > Eq. (5) Eq. 37) q. (14) q. (2)
i v
y(@®)

Fig. (1): Block diagram of the proposed adaptive controller, in whichy = [y;,y,,y3]" and x = [X4,X;,X3]".

4. Simulation examples

In this section, the Jerk system is used as an example
to verify the effectiveness of the proposed reliable
synchronization controller designed method. onsider
the following Jerk systems in the form of (47)

X1 =X,
{ Xz = X3
%3 =5—a(x; +x3) + b(x1x3) — exp (x4

The Jerk system (45) is chaotic when the parameter
values are taken as:

(47)

a=1 b=04 (48)
and the design parameter values are taken as:
C1 = CZ = C3 = 1 (49)

For simulation purpose, the actuator faults and input
saturation are considered as:

pp =0 t<4
[p1=0.2 4<t<10 ,uy, =
pp=1 t> 10
p, =0 t<8 _
5 and {pz — 04 t>g UM, =2 (50)

The design parameter values and the parameter
values of the novel Jerk chaotic systems are taken as
in the chaotic case,i.e.a=1,b=04,¢c; = ¢, = ¢c3 =
landthus g = g, = g; = 1.
Furthermore, the initial conditions of the master
chaotic system (1) is selected as:
x1(0) = 2.5 ,x2(0)4=9 0.7 ,X3(0) (51)
The initial conditions of the master chaotic system
(2) is selected as:
y1(0) = —1.3,y,(0) = 4.2 ,y5(0) = 2.5(52)
Also, the initial conditions of the parameter estimates
a (), b(t), g, (1), g, (t), g3 (t) are selected as @ (0) =
6.2,b (0)=11.5, §,(0) =5, §,(0) = 3.6, §3(0) =
—3.5. The simulation results are shown in Figures 2-
7. Figures 2-3 express the control inputs u, (vf)and
u, (V). As can be seen from (50), the first actuator
lost 80 percent of its effectiveness at t = 4 and stuck
at t = 10 and the second actuator lost 60 percentage
of its effectiveness at t = 8. In addition, due to the
saturation problem the first input cannot become
more than uy, =5 and the second input cannot
become more than uy, = 2. The oscillation of the
control input is due to the saturation problem in the
inputs. If the bounds of the saturation uy, and uy,
increase, these oscillations will decrease. Figures 4-6
show the states x;(t), i = 1,2, 3 that are completely
synchronized with y;(t), i = 1,2,3. In addition, the
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time-history of the synchronization errors e;(t),
e, (t), es(t) are shown in Figure 7. Indeed, fig. 7
expresses the synchronization errors that converge to
a small neighbourhood of the origin. The simulation
results represent the efficiency of the proposed robust
adaptive backstepping controller.

6
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T T ' . -1 5. Conclusion
o8 ‘ In this paper, a robust adaptive synchronization
controller is proposed for the novel Jerk chaotic
INWR systems in the presence of unknown parameter, input
N7 M saturation and actuator faults. The considered
actuator faults are modelled to cover both loss of
effectiveness and stuck at some unknown values. The
e . . ‘ offered controller compensates the actuator faults
i = - LS 20 without any need for explicit fault detection. In this
time(sec.) R

paper, the proposed adaptive control law compensates
Fig. (6): The states x3(t) and y3(t) the effect of the unknown parameters, unknown
' el actuator faults and saturation nonlinearities by using
i backstepping technique. Simulation results illustrate
the effectiveness of the proposed scheme. The
3 proposed adaptive design method proves that without
i the need for the explicit fault detection, all the closed
loop signals remain bounded and the tracking error

converges to a small neighborhood of the origin.

40
20

x3,y3
=)

-20
-40

-60

100

™
<

=

error tracking
n
=

100 5 10 15 20
time(sec.)
Fig. (7): Time-history of the synchronization errors e;(t),

ex(t), es(t)
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