
Journal of Intelligent Procedures in Electrical Technology, Vol.9, No.33, Spring 2018 
 

   62 

Analysis of Bifurcation Phenomenon in a Grid-Connected Electric 
Arc Furnace 

 
Mehran Zamanifar(1) – Mohammad Behzad Es-haghi(2)  

 
(1) Assistant Professor - Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, 

Najafabad, Iran 
(2) MSc - Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, 

Iran 

 
Received Date: 13/11/2017  Accepted Date: 5/2/2017 

  

Abstract:  
This paper aims to study the stability and dynamic behavior of a grid-connected electric arc furnace system, 
using bifurcation theory. This theory introduces a systematic method for stability analysis of dynamic systems, 
under changes in the system parameters. In fact, a parameter is constantly changed in each step, using 
MATLAB and/or AUTO software, and system eigenvalues are monitored simultaneously. Considering how 
the eigenvalues approach the system’s imaginary axis on S plain in accordance with the changes in the targeted 
parameter, the occurred saddle-node and/or Hopf bifurcation of the system is extracted. In this paper, at first, 
electric arc furnace is modeled by the differential-algebraic equations and then based on the projection method, 
two-dimensional center manifold at the Hopf bifurcation happens in the electric arc furnace system is achieved 
analytically. Projection method is discussed in the bifurcation theory and is presented totally in this paper. 
Finally, the results are compared by the computer simulations. 
 
Index Terms: Electric arc furnace, bifurcation theory, projection method, center manifold. 
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شعابات است. ان نظریههدف این مقاله، مطالعه پایداري و رفتار دینامیکی یک سیستم کوره قوس الکتریکی متصل به شبکه قدرت به کمک خلاصه: 

در هر  کند. در حقیقت،هاي دینامیکی تحت شرایط تغییر پارامترهاي سیستم معرفی میاین تئوري روش منظمی را براي تحلیل پایداري سیستم

 AUTO او ی MATLAB افزارشود و به طور همزمان مقادیر ویژه سیستم به کمک نرممرحله پارامتري از سیستم به طور پیوسته تغییر داده می

زینی و یا هاپف رخ داده در سیستم -انشعاب گره S شدن آنها به محور موهومی در صفحهشود. با توجه به نحوه حرکت مقادیر ویژه و نزدیکردیابی می

سازي مدل جبري-گردد. در این مقاله، ابتدا سیستم کوره قوس الکتریکی به کمک معادلات دیفرانسیلبه ازاي تغییر پارامتر مورد نظر استخراج می

لی دهد به صورت تحلیشود و سپس به کمک روش تصویر، منیفلد مرکزي دو بعدي انشعاب هاپف که در سیستم کوره قوس الکتریکی رخ میمی
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1. Introduction  

Electric arc furnaces (EAFs) are used in a diverse 
range of industrial smelting processes. In general, 
these furnaces are supplied by an AC source. EAFs 
are highly nonlinear and nonperiodic dynamic 
systems and they tend to suffer from harmonic and 
inter-harmonic distortions [1, 2]. Conventional 
methods are unable to accurately describe an EAF’s 
dynamic behavior but can be used to obtain estimates 
of the harmonics, inter-harmonics, flicker 
phenomenon and voltage fluctuations at the point of 
common coupling. These are all effects that 
adversely influence the power quality. In one of the 
first attempts to represent an EAF, a simple model 
was proposed that consisted of an inductor and a 
series resistor coupled to a current controller switch. 
However, this model does not account for the time-
varying nature of the EAF [3]. In reference [4], a 
simplified current against voltage characteristic was 
used to represent the EAF’s dynamic behavior in the 
modeling of power system transients. This model did 
not find widespread use since it does not incorporate 
time-varying effects. The power balance principle is 
used in references [1, 5] to allow the EAF’s steady-
state behavior to be represented using a differential 
equation. 
In general, practical power systems operate in a 
quasistatic state, which varies smoothly with small 
changes in the system parameters. However, under 
certain operational conditions a small change in the 
system parameters can result in a significant 
qualitative change in the system behavior and 
therefore a change on the stability of the original 
system. Among several nonlinear mathematical 
theories [6], bifurcation analysis has been applied to 
investigate qualitatively the ways in which 
instabilities can take place in a power system as well 
as how the system equilibrium points become 
unstable [7]. Such qualitative changes take place in 
the system’s behavior as a system parameter is varied 
slowly is called bifurcation. The parameter value at 
which bifurcation takes place is called bifurcation 
point. The bifurcation theory provides a set of 
mathematical techniques for nonlinear differential 
algebraic equations (DAEs). Thus it is adequate for 
studying electric power systems that are typically 
modeled as a set of nonlinear DAE. In particular, the 
bifurcation theory is widely recognized as an 
effective tool to study voltage stability [8-11]. The 
advantage of this technique consists in the 
determination of the system eigenvalues, i.e., it is not 
necessary to numerically solve the Jacobian matrix 
for the system, thus significantly reducing the 
computational effort and providing a qualitative tool 
to assess nonlinear oscillation in nonlinear power 
grid dynamical system. The presence of chaotic 

motions in the two-degree freedom swing equations 
was discovered in [12]. Subsequent applications of 
bifurcation theory have been directed to the studies 
such as voltage collapse [13], subsynchronous 
resonance [14], ferroresonance oscillations [15], 
chaotic oscillations [16], and design of nonlinear 
controllers [17]. Furthermore, this theory has been 
applied to assess the dynamical behavior of nonlinear 
components such as induction motors [18], load 
models [19, 20], tap changing transformers [21], 
power system stabilizers [22] and static VAR 
compensators [22, 23]. However, to the best authors 
knowledge there is no application of this theory to 
assess the nonlinear oscillations due to AC-fed EAF 
analytically. In order to tackle the last problem, this 
paper introduces the application of bifurcations 
theory to assess the electric arc furnace dynamical 
performance due to quasistatic changes in the supply 
system parameters such as the grid thevenin 
impedance. It is investigated how bifurcations points 
lead the EAF to oscillatory instabilities. The main 
contribution of the present paper is applying the 
projection method analytically in the electric arc 
furnace system to achieve two-dimensional center 
manifold at the Hopf bifurcation. 
2. Bifurcation phenomenon 

The transient and steady state of a system represented 
by a set of differential equations can be solved by 
conventional numerical integration methods, by 
computing the trajectories and orbits using digital 
simulation. However, it is possible with bifurcations 
theory to predict the behavior of trajectories and 
orbits without resorting to the solution of the 
differential equations [24-29]. In this case, 
bifurcations analysis is applied to study the 
emergence of sudden changes in a system response 
arising from smooth, continuous variations on the 
system parameters. At certain points (bifurcations 
points) infinitesimal changes in system parameters 
can cause significant qualitative changes in 
equilibrium solutions. In other words, bifurcation is 
the emergence of phases in a non-equivalent 
topological format under changes in parameters [7]. 
Consider a parameter-dependent continuous-time 
system as following: 

( , )x f x                                                              (1) 

Where nx   and m  are variables of phases 

and parameters. In this relation, f  in comparison to 

x  and   is steady. 0x x  is a hyperbolic equili-

brium point for the system in 0  . By a small 

change in parameter, the equilibrium point is changed 

slightly, but so that the hyperbolic is still constant. 
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It is obvious that in a vertical form the hyperbolic 
condition of equilibrium point can be rejected in two 
ways. First is that for some amounts of the   
parameter, a real simple eigenvalue gets closer to 
zero and we have: 1 0  . Second, a pair of mixed 

simple eigenvalue gets close to the imaginary axis 

and we have: 1,2 0 0, 0i     . In order to have 

more specific-values on the imaginary axis, more 
parameters are needed. The type of bifurcation 

related to the emergence of 1 0   is called saddle-

node bifurcation. Corresponding bifurcation with the 

emergence of 1,2 0 0, 0i      is called Hopf 

bifurcation. Fold and Hopf bifurcations occur when 
1n   and 2n , respectively. 

 
2.1 Normalized saddle-node bifurcation 

Consider the following one-dimension parameter-
dependent continuous-time system [24]: 

2 ( , )x x f x                                                   (2) 

This system has an equilibrium non-hyperbolic point 

0 0x   with the absolute value of x (0,0) 0f   at 

0  . The system’s behavior is also obvious for 
other amounts of   which are shown in Fig. 1.  
 

 
Fig. (1): Fold bifurcation 

 

when 0  , there are two equilibrium points: 

1,2 ( )x      where the left equilibrium point  

is stable and the right one is unstable. There is no 
equilibrium point in the system when 0  . When 
  starts from a negative point, moving to zero and 
then to the positive, the equilibrium points (stable and 
unstable) collide with each other and make an 
equilibrium point at 0   with 0   and then 
disappear. Now, add to system (2) higher-order terms 
that can depend smoothly on the parameter. It 
happens that these terms do not change qualitatively 
the behavior of the system near the origin 0x   for 
parameter values close 0  . Actually, system of 

2 3( )x x O x    close to the origin is a topological 

equivalent of the 2x x   system. 

2.2 Normalized Hopf bifurcation 

Consider the following two-dimension parameter-
dependent continuous-time system [25]: 

2 2
1 1 2 1 1 2

2 2
2 1 2 2 1 2

( )

( )

x x x x x x

x x x x x x





    


   




                                   (3) 

For all amounts of   with the equilibrium point of 

1 2 0x x   in the Jacobian matrix of 1

1
A





 
  

 
, 

this system has an absolute value of 1,2 i   . By 

introducing the mixed variable of 1 2z x ix  , system 

(3) can be changed to the following mixed form: 
2

( )z i z z z                                                     (4) 

Finally, showing iz e   and doing some 

mathematical operations, the following polar form of 
system (4) is obtained. 

2( )

1

   



  







                                                     (5) 

As   and   in equation (5) are independent from 

each other, while   passing through zero, 
bifurcations of the system’s phases are simply 
analyzed using the polar form. The first equation 
(which should be considered for 0  ) has the 

equilibrium point of 0   for all amounts of  . If 

0  , equilibrium point is linearly stable. In 0  , 
it is nonlinearly stable and for 0  , equilibrium 
point becomes nonlinear. Furthermore, for 0   
there is another stable equilibrium point of 

0 ( )   . The second equation defines rotation at 

a constant speed. Therefore, the bifurcation diagram 
of the two-dimension system (3) is obtained through 
the accumulated effects of the defined movements in 
the two equations of (5) in the form of Fig. 2. The 
system always has an equilibrium point in the origin. 
This equilibrium point is a stable center for 0   

and unstable for 0  . At the critical amount of 
parameter, i.e. 0  , the equilibrium point is stable 
nonlinearly and is equivalent to the center 
topologically. When 0  , the equilibrium point is 
surrounded by a separate limit cycle which is unique 
and stable. The radius of this cycle equals to

0 ( )   . All circuits, both inside and outside the 

cycle considering the origin with passing time 
t    move to the convergence cycle. The system 
with the opposite sign for nonlinear phases can be 
analyzed in a similar way: 

2 2
1 1 2 1 1 2

2 2
2 1 2 2 1 2

( )

( )

x x x x x x

x x x x x x





    


   




                                   (6) 

And we have it in the mixed way: 
2

( )z i z z z                                                     (7) 
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Fig. (2): Suppercritical Hopf bifurcation 

 

 
Fig. (3): Subcritical Hopf bifurcation 

 
According to Fig. 3 in 0  , the system experiences 
Hopf bifurcation. Unlike system (3), there is an 
unstable limit cycle in system (6) where by passing 
from zero of   and changing it to the positive 
amount, the cycle disappears. The equilibrium point 
in origin for 0   has a similar stability same as 
system (3). It means it is stable for 0   and 
unstable for 0  . In critical point, the stability of 
system is the opposite of system (3) which is unstable 
nonlinearly. As it is clear, there are two Hopf 
bifurcations. As the limit cycle for positive amounts 
of   parameter is made (after bifurcation), the Hopf 
bifurcation of system (3) is super-critical. In the 
opposite side, system (6) is sub-critical because there 
is a limit cycle before bifurcation. In both 
bifurcations, as the bifurcation parameter increases in 

0  , the equilibrium point loses its stability. In the 
first one (with the negative sign in cubic sentences), 
the stable equilibrium point is replaced by a limit 
cycle with a small domain. Therefore, the system is 
stayed next to the equilibrium point and it loses its 
stability in a soft and non-catastrophic form. In the 
second one (with a positive sign in cubic sentences), 
the attracting area of equilibrium point is restricted 
by an unstable limit cycle. When the parameter 
moves into its critical amount, the domain of this 
cycle is smaller and is removed by moving parameter 
from the critical point. So the system is moved away 
from its location next to the equilibrium point and 
stability is lost in a sharp and catastrophic form. If the 
system loses its stability softly, it can be easily 
controlled and if the parameter is negative again, the 
system is returned to its stable equilibrium point. But 
if the system loses its stability sharply, making the 

bifurcation parameter negative, cannot return the 
system in the stable equilibrium point, because it may 
leave its attracting focus. It should be mentioned that 
recognition of the type of Hopf bifurcation is possible 
from stable equilibrium point in the critical amount 
of bifurcation. Now, the higher order phrases are 
added to systems (3) and (6). Demonstration of the 
systems in the vector form is as following: 

  41 1 12 2
1 2

2 2 2

1
( )

1

x x x
x x O x

x x x





      
         

      




    (8) 

In which 
2T 2 2

1 2 1 2( , ) ,x x x x x x    and sentences 

4
( )O x  can be steady and dependent on   

parameter. In this way, system (8) close to origin is 
equivalent of systems (3) and (6) topologically. So 
the higher order phrases do not affect the behaviors 
of system’s bifurcation. In the following we are going 
to investigate just the Hopf bifurcation, since it 
happens in the EAF system. 
2.3. Projection method for computation of center 

manifold 

There is a useful method for center manifold 
computation which avoids the transformation of the 
system into its eigenbasis [24]. Instead, only 
eigenvectors corresponding to the critical 
eigenvalues of the Jacobian matrix shown by A  and 

its transpose TA  are used to project the system into 
the critical eigenspace and its complement. Suppose 
system (1) is written as: 

nxxFAxx  ),(                                      (9) 

where    2
F x O x  is a smooth function. In the 

case of Hopf bifurcation, A  has a simple pair of 

complex eigenvalues on the imaginary axis: 

1,2 0 0, 0j     , and these eigenvalues are the 

only eigenvalues with Re 0  . Let nq   be a 

complex eigenvector corresponding to 1 : 

0 0,Aq j q Aq j q    . Introduce also the adjoint 

eigenvector np   having the properties: 
T T

0 0,A p j p A p j p     and satisfying the 

normalization: , 1p q    where i i
1

,
n

i

p q p q


    is 

the standard scalar product in n  (linear with 

respect to the second argument). The critical real 

eigenspace cT  corresponding to 0j  is now two-

dimensional and is spanned by  Re ,Imq q . The real 

eigenspace suT  corresponding to all eigenvalues of 

A  other than 0j  is  2n  -dimensional. 
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Consider the lemma: suy T  if and only if , 0p y  

. Here ny   is real, while np   is complex. 

Therefore, the condition in this lemma implies two 
real constraints on y  (the real and imaginary parts of 

,p y   must vanish). This lemma allows 

decomposing any nxp   as: 

x zq z q y                                                      (10) 

where 1zp  and c su,zq z q T y T   . The 

complex variable z  is a coordinate on cT . We have: 
,

, ,

z p x

y x p x q p x q

  


      
                                    (11) 

where .,.   is the standard scalar product. In the 

coordinates of (11), system (9) has the form: 
(12) 

0 , ( )

( ) , ( ) , ( )

z j z p F zq zq y

y Ay F zq zq y p F zq zq y q p F zq zq y q

    


           




  

System (12) is  2n  -dimensional, but one has to 

remember the two real constraints imposed on y . 

The system can now be written in a form (13) as 
follows: 

2 2 2
0 20 11 02 21 10 01

2 2
20 11 02

1 1 1
, , ...

2 2 2

1 1
...

2 2

z j z G z G zz G z G z z G y z G y z

y Ay H z H zz H z




           

     






                                                (13) 

where n
ijHGGGGGG  ,,,,,, 1001

1
21021120

 

and the scalar product in n  is used. Complex 
number and vectors involved in (13) can be computed 
by the following formulas: 

i+j

ij i j
, ( ) , 2 ,

0
G p F zq z q i j

zz z


     

 
     (14) 

2

10,i

i

, ( ) , 1,2,..., ,
0, 0

G p F zq z q y i n
z yy z


     

  
 (15) 

2

01,i

i

, ( ) , 1,2,..., ,
0, 0

G p F zq z q y i n
z yy z


     

  
(16) 

i+j

ij ij jii j
( ) , 2

0
H F zq z q G q G q i j

zz z


     

 
 (17) 

The center manifold now has the representation: 

   32 2
20 11 02

1 1
,

2 2
y V z z z zz z O z        (18) 

where ij, 0p    . The vectors n
ijw   can be 

found from the linear equation: 

 

 

0 20 20

11 11

0 02 02

2

2

j E A H

A H

j E A H

 



 

  

 

   

                                    (19) 

These equations have unique solutions since the 
matrices in their left-hand sides are invertible in the 
ordinary sense because 00, 2 j  are not eigenvalues 

of A . The restricted equation can be written as: 

   12 2 1 2
0 20 11 02 21 10 11 01 0 20

1 1 1
2 , , 2 ...

2 2 2
z j z G z G zz G z G G A H G j E A H z z 

                                             (20) 

where the scalar product in n  is used. A nice 
feature of the above algorithm is that it gives the 
restricted system (20) directly in the complex form 
suitable for the Lyapunov coefficient computations. 

Write  F x  in terms of multilinear functions 

( , )B x y  and ( , , )C x y z : 

 41 1
( ) ( , ) ( , , )

2 6
F x B x x C x x x O x                 (21) 

Then we can express: 

10 01, , ( , ) , , , ( , )G y p B q y G y p B q y              (22) 

and write the restricted equation (20) in the form: 
where 

 



  

2 2 1
0 20 11 02 21 11

1 2
0 20

1 1 1
2 , ( , )

2 2 2

, ( , 2 ) ...

z j z G z G zz G z G p B q A H

p B q j E A H z z









        

   


                                                            (23) 

20 11 02 21

20

11

02

, ( , ) , , ( , ) , , ( , ) , , ( , , )

( , ) , ( , ) , ( , )

( , ) , ( , ) , ( , )

( , ) , ( , ) , ( , )

G p B q q G p B q q G p B q q G p C q q q

H B q q p B q q q p B q q q

H B q q p B q q q p B q q q

H B q q p B q q q p B q q q

           

      

      

      

                                          (24) 

Substituting of (24) into (23), results: 

2 2 2
0 2 0 1 1 02 21

1 1 1
...

2 2 2
z j z g z g zz g z g z z                                                                                (25) 
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Where 

 
20 11 02

11
21 0

2 2

0 0 0

, ( , ) , , ( , ) , , ( , )

, ( , , ) 2 , ( , ( , )) , ( , 2 ( , ))

1 2 1
, ( , ) , ( , ) , ( , ) , ( , )

3

g p B q q g p B q q g p B q q

g p C q q q p B q A B q q p B q j E A B q q

p B q q p B q q p B q q p B q q
j j j



  



        

          

        

                                      (26) 

Thus, the first Lyapunov coefficient which is achieved by [24]: 

    -1-1
1 0

0

1
0 Re , ( , , ) 2 , ( , ( , )) , ( , 2 ( , ))

2
L p C q q q p B q A B q q p B q j E A B q q


                                      (27) 

 

This formula seems to be the most convenient for 
analytical treatment of the Hopf bifurcation in n -
dimensional systems with 2n  . It does not require 
a preliminary transformation of the system into its 

eigenbasis, and it expresses  1 0L  using original 

linear, quadratic, and cubic terms, assuming that only 
the critical (ordinary and adjoint) eigenvectors of the 
Jacobian matrix are known. The kind of Hopf 
bifurcation (supper- or sub-critical) is dependent to 

sign of the first Lyapunov coefficient. If  1 0 0L  , 

then system (1) close to the equilibrium point is 
equivalent of system (3) topologically (supper-

critical bifurcation) and if  1 0 0L  , then system (1) 

close to the equilibrium point is equivalent of system 
(6) topologically (sub-critical bifurcation). 
3. Electrical arc furnace mathematical model 

In this paper, an EAF model based on an ordinary 
differential equation (ODE) capable of capturing its 
essential dynamic characteristics is used [1, 4]: 

n 23
1 2 m 2

kdr
k r k r i

dt r 
                                            (28) 

where r  is the arc furnace radius, n  is the arc cooling 
effect. In fact, it varies from 0 to 2 with integer steps; 
where 0n   represents a nondependence of the arc 
temperature from the arc radius, 1n   represents a 
long arc and nonhot environment surrounding the arc 
and 2n   if the arc cooling is proportional to the 
electrodes cross-section. m  is the inner arc 
temperature effect. It also varies from 0 to 2 with 
integer steps; where 0m   for a large and colder arc 
length and 2m   for a smaller and hotter arc length. 
Constants 1 2,k k  and 3k  represent the arc cooling 

effect, the derivative proportion of the internal arc 
energy and the resistivity proportion of the arc 
column, respectively. These constants have a direct 
effect on the convergence speed to the system 
stability, the v i  characteristic and on its 
equilibrium operation point. The electric circuit 

representation of the EAF structure adopted in this 
paper is given in Fig. 4 [30-32]. In this case, R  and 
L  represent the resistance and reactance of the 
supply system, substation transformer winding, and 
distribution lines. Parameter HL  represents the 

reactance of flexible cables, the arc furnace 
transformer windings and electrodes. Parameters of 
the system are shown in table 1 [30]. In order to 
obtain a unified mathematical framework of supply 
system and EAF, the arc furnace model given by (28) 
must be coupled with the network equations. The 
resulting state space matrix equation is given by (29), 
which can be expressed in compact form as (1). 

 

   

LL

CC
m 2 S

3 HH

H H

m 3 n 2

3 H 1

2 2

1
0 0

11 1
0 0

0
1

0 0 0

0

0 0

R

L L

ii
LC C vv

Vk r ii
L L rr

k r i k r

k k

 

  

  
 
          

       
               
               

 
 









   (29) 

 

 
Fig. (4): Equivalent circuit of a EAF system connected to 

the power network 

 

4. Bifurcation analysis of grid-connected EAF 

system 

The equilibria of the system (29) are zeros of the field 

given by its right-hand side. After some mathematical 

computation two equilibria will be achieved as: 

 

 

0 L0 H0 C03.7625 , 8.6979 , 0.1302r cm i i pu v pu                                                                              (30) 

0 L0 H0 C00.4908 , 0.0193 , 0.9981r cm i i pu v pu                                                                             (31) 

Jakobian matrix of the system (29) based on the equilibria has the representation of: 
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     

         

m 3m 2
3 H3

H H H

m 4 n 22m 3
3 H 13 H

2 2 2

1
0 0

1 1
0 0

21
0

3 12
0 0

R

L L

C C
A m k r ik r

L L L

m k r i n k rk r i

k k k

  

   

  
 
 

 
 
   
 
 
   

 
  

                                                          (32) 

 

solving the characteristic equation 0I A    based 

on first and second equilibrium of (30) and (31), 
respectively results: 

1,2 3 40.2386 14.1232, 0.4752, 96.1974j          (33) 

1,2 3 40.2498 10.0921, 638.587, 25.2649j        (34) 

According to the negative sign of all real values of 
eigenvalues for the first equilibrium point, one can 
deduce that it is stable and the second one is not. 
Thus, the system has just one stable equilibrium 
point. It is easy to check that a Hopf bifurcation takes 
place if the bifurcation parameter L  reaches to value 

0 0.4606L L pu  . Actually, a pair of complex 

conjugate eigenvalues cross the imaginary axis at 

1,2 0 0, 11.0224 0j      . In this case two other 

eigenvalues are 3 0.1694    and 4 96.1974    

which are real and negative. In order to find the kind 
of Hopf bifurcation, according to (27), the first 
Lyapunov coefficient should be computed. First of 
all, the equilibrium point should be shifted to the 
origin, that is, L L L0i I i  , C C C0v V v  , 

H H H0i I i  , 0r r    where L0i , C0v , H0i  and 0r  

are given in (30). Substituting (29) results as: 

L L C L0 C0 S

1 1 1R R
I I V i v V

L L L L L

             
              
          

  (35) 

C L H L0 H0

1 1 1 1
V I I i i

C C C C

         
           

        
      (36) 

 

       m 2 m 23 3
H C 0 H 0 H0 C0

H H H H

1 1k k
I V r I r i v

L L L L

             
                

        

                                               (37) 

        m 3 2 n 13 1
0 H H0 0

2 2

k k
r I i r

k k

     
          

   

                                                                                   (38) 

Taylor series expansion based on the origin is defined as: 

 
   

               
n

n 1 2 32 3

0

0 1 1 1
0 0 0 0 ...

! 1! 2! 3!n

f
f x x f f x f x f x

n





                                                    (39) 

Based on (39), Taylor series for functions in the right hand side of equations (37) and (38), results in: 
           m 3 m 3m 2

3 0 H0 3 03 0
H C H H

H H H H

2 21 k m r i k m rk r
I V I I

L L L L

             
                       

  

           m 4 m 4

3 0 H0 3 02 2
H

H H

2 3 2 3

2 2

k m m r i k m m r
I

L L

           
      
   
   

 

             m 5 m 5

3 0 H0 3 03 3
H

H H

2 3 4 2 3 4

6 6

k m m m r i k m m m r
I

L L

           
      
   
   

 

         

 
m 6 m 2

3 0 H0 4 4 53 0 H0 C0
H

H H H

2 3 4 5

24

k m m m m r i k r i v
O I

L L L

            
               

               (40) 

               m 4 m 4n 22m 3
3 0 H0 1 0 3 0 H03 0 H0

H H

2 2 2

3 1 2 32 k m r i k n r k m r ik r i
I I

k k k

               
                  

  

                m 5 m 5n 32
3 0 H0 1 0 3 0 H02 2

H

2 2

3 4 1 2 3 4

2

k m m r i k n n r k m m r i
I

k k

            
      
   
   
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              m 4 m 5m 3 m 3 2
3 0 3 02 2 2 23 0 3 0 H0

H H H

2 2 2 2

3 3 4

2

k m r k m m rk r k r i
I I I

k k k k

               
                       

             m 6 m 62
3 0 H0 3 0 H03 3

H

2 2

3 4 5 3 4 5

6 3

k m m m r i k m m m r i
I

k k

             
       
   
   

 

         

 
m 7 2 1

3 0 H0 4 3 2 4 51 0
H H

2 2

3 4 5 6

24

nk m m m m r i k r
O I I

k k

         
            

                       (41) 

Now, multilinear functions defined as (21) should be computed. If 1 Lξ I , 2 Cξ V , 3 Hξ I , 4ξ R  then: 
24

i j k
, 1 j k

( )
( , )

1,2,3, 4 0
i

j k

F
B x y x y

i



 




  
                                                                                                    (42) 

34
i

i j k g
, , 1 j k g

( )
( , , )

1,2,3, 4 0j k g

F
C x y z x y z

i



  




   
                                                                                        (43) 

Functions ( , )B x y  and ( , , )C x y z  are equal to: 

 
T

3 4( , ) 0 0 ( , ) ( , )B x y B x y B x y                                                                                                             (44) 

 
T

3 4( , , ) 0 0 ( , , ) ( , , )C x y z C x y z C x y z                                                                                                   (45) 

Setting 3,4i   in equation (42) and (43) yields: 

    

 
     

 
m 3 m 4

3 0 3 0 H0

3 3 4 4 3 4 4

H H

2 2 3
( , )

k m r k m m r i
B x y x y x y x y

L L

         
     
   
   

                            (46) 

 

 
    

 
m 4m 3

3 0 H03 0
4 3 3 3 4 4 3

2 2

2 32
( , )

k m r ik r
B x y x y x y x y

k k

       
           

 

          

 
m 5 n 32

3 0 H0 1 0

4 4

2

3 4 1 2k m m r i k n n r
x y

k

       
 
 
 

                                                   (47) 

     

 
m 4

3 0

3 3 4 4 4 3 4 4 4 3

H

2 3
( , , )

k m m r
C x y z x y z x y z x y z

L

    
    
 
 

 

      

 
m 5

3 0 H0

4 4 4

H

2 3 4k m m m r i
x y z

L

    
 
 
 

                                                                        (48) 

    

 
     m 4 m 5

3 0 3 0 H0

4 3 3 4 3 4 3 4 3 3

2 2

2 3 2 3 4
( , , )

k m r k m m r i
C x y z x y z x y z x y z

k k

         
       
   
   

 

 
      

 
m 6 2

3 0 H0

3 4 4 4 3 4 4 4 3 4 4 4

2

3 4 5k m m m r i
x y z x y z x y z x y z

k

     
   
 
 

                                        (49) 

Jacobian matrix based on the stable equilibrium point is: 

11 12

21 23

32 33 34

43 44

0 0

0 0

0

0 0

A A

A A
A

A A A

A A

 
 
 
 
 
 

                                                                                                                             (50) 

in which 11

R
A

L


 , 12

1
A

L


 , 21

1
A

C
 , 23

1
A

C




, 32

H

1
A

L
 , 

 m 2

3 0
33

H

k r
A

L

 


 , 

   m 3

3 0 H0

34

H

2m k r i
A

L

 


 , 
 m 3

3 H0
43

2

2k r i
A

k

 

  and 

       m 4 n 22
3 0 H0 1 0

44

2 2

3 1m k r i n k r
A

k k

    
  . Eigenvector 

related to the eigenvalue 0j   is equal to 

 
T

0 1 2 3 4,Aq j q q q q q q   and adjoint 

eigenvector related to the eigenvalue 0j   is equal 
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to 
T

0A p j p   ,  
T

1 2 3 4, p p p p p     . Now, 

the eigenvectors should be normalized as 

i i
1

, 1
n

i

p q p q


      where ip  is conjugate complex 

of ip . Now, N  is defined as 

1 1 2 2 3 3 4 4,N p q p q p q p q p q           . If p  is set to 

 1p N p   then 
1 1

,  , , 1p q p q p q
N N

          . 

Now, we are going to find components of equation 
(27): 

 
T

3 4( , ) 0 0 ( , ) ( , )B q q B q q B q q                  (51) 

 
T

3 4( , ) 0 0 ( , ) ( , )B q q B q q B q q                  (52) 

 
T

3 4( , , ) 0 0 ( , , ) ( , , )C q q q C q q q C q q q       (53) 

 
T1

1 2 3 4( , )E A B q q E E E E                    (54) 

   
T1

0 1 2 3 42 ( , )G j I A B q q G G G G


     (55) 

 

where I  is 4 4  identity matrix and: 

    

 
     

 
m 3 m 4

3 0 3 0 0

3 3 4 4 3 4 4

H H

2 2 3
( , ) Hk m r k m m r i

B q q q q q q q q
L L

         
     
   
   

                            (56) 

 

 
    

 

          

 

m 4m 3
3 0 H03 0

4 3 3 3 4 4 3

2 2

m 5 n 32
3 0 H0 1 0

4 4

2

2 32
( , )

3 4 1 2

k m r ik r
B q q q q q q q q

k k

k m m r i k n n r
q q

k

  

  

    
           

     
 
 
 

                                                 (57) 

    

 
     

 
m 3 m 4

3 0 3 0 H0 2
3 3 4 4

H H

2 2 2 3
( , )

k m r k m m r i
B q q q q q

L L

         
    
   
   

                                       (58) 

 

      

 

          

 

m 4m 3
3 0 H023 0

4 3 3 4

2 2

m 5 n 32
3 0 H0 1 0 2

4

2

4 32
( , )

3 4 1 2

k m r ik r
B q q q q q

k k

k m m r i k n n r
q

k

  

  

    
          

     
 
 
 

                                                      (59) 

     

        m 4 m 5

3 0 3 0 H02
3 3 4 4 4 3

H H

2 3 2 3 4
( , , ) 2

k m m r k m m m r i
C q q q q q q q q

L L

           
      
   
   

 

 2
4 4q q                                                                                                                                        (60) 

    

       m 4 m 5

3 0 3 0 02
4 3 4 3 4 3

2 2

2 3 2 3 4
( , , ) 2 Hk m r k m m r i

C q q q q q q q q
k k

         
      
   
   

 

        

 
m 6 2

3 0 H02 2
3 4 4 4 3 4 4

2

3 4 5
2

k m m m r i
q q q q q q q

k

     
  
 
 

                                    (61) 

    

 
     

 
m 3 m 4

3 0 3 0 H0

3 3 4 4 3 4 4

H H

2 2 3
( , )

k m r k m m r i
B q E q E q E q E

L L

         
     
   
   

                          (62) 

 

 
    

 

          

 

m 4m 3
3 0 03 0

4 3 3 3 4 4 3

2 2

m 5 n 32
3 0 H0 1 0

4 4

2

2 32
( , )

3 4 1 2

Hk m r ik r
B q E q E q E q E

k k

k m m r i k n n r
q E

k

  

  

    
           

     
 
 
 

                                               (63) 

    

 
     

 
m 3 m 4

3 0 3 0 H0

3 3 4 4 3 4 4

H H

2 2 3
( , )

k m r k m m r i
B q G q G q G q G

L L

         
     
   
   

                          (64) 
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 

 
    

 

          

 

m 4m 3
3 0 H 03 0

4 3 3 3 4 4 3

2 2

m 5 n 32
3 0 H0 1 0

4 4

2

2 32
( , )

3 4 1 2

k m r ik r
B q G q G q G q G

k k

k m m r i k n n r
q G

k

  

  

    
           

     
 
 
 

                                               (65) 

Now, equation (27) is rewritten: 

   1 0

0

1
Re , ( , , ) 2 , ( , ) , ( , )

2
L L p C q q q p B q E p B q G


                                                                                 (66) 

 

Table (1): System parameters [30] 

3k  2k  1k  n  m  sV  HL  R  L  C  

3  0.005  0.08  2  2  1 pu  0.1 pu  0.1 pu  0.1 pu  0.1 pu  
 

Using software MATLAB the computations can be 
done. The result is   5

1 0 1.5732 10L L   . The 

Lyapunov coefficient is clearly positive. Thus, the 
Hopf bifurcation is sub-critical. Therefore, there is an 
unstable limit cycle in (29), which disappears when 
the bifurcation parameter L  crosses 0 0.4606L pu  

from fewer values to more ones. The equilibrium 
point is stable for 0L L  and unstable for 0L L . It 

is nonlinearly unstable at the critical parameter value. 
The region of attraction of the equilibrium point is 
bounded by the unstable cycle, which shrinks as the 
parameter approaches its critical value and 
disappears. Thus, the system is pushed out from a 
neighborhood of the equilibrium, giving us a sharp or 
catastrophic loss of stability. In the following the 
EAF system is simulated by software AUTO to 
compare the results with the analytic investigation. 
Furthermore, it is possible to find out possible 
bifurcation points in the limit cycles in the case of 
bifurcation parameter changes. The result is shown in 
Fig. 5. This figure relates the current magnitude in the 
inductor, Li , to the bifurcation parameter L , which 

in this case is the system inductance. A Hopf 
bifurcation point was found when the inductance 
reached a 0 0.4606L pu  value, as illustrated in Fig. 

5. The solid and open circles indicate the stable and 
unstable trajectories in the periodic orbit. In fact, 
when the inductance reached a 0 0.3251L pu   value, 

fold bifurcation of cycles happens, as shown in the 
zoom plot of Fig. 6. b by the labels UHB 
(unstable/subcritical Hopf bifurcation) and SHB 
(stable/supercritical Hopf bifurcation) points. 
Therefore, two limit cycles (one stable and the other 
unstable) collide and disappear at the bifurcation 
parameter 0L . Fig. 7, generally shows fold 

bifurcation of limit cycles. Assume that at 0   the 
cycle has a simple multiplier 1 1   and its other 

multiplier satisfies 20 1  . The restriction of 

Poincare map αP  to the invariant manifold C
αW  is a 

one-dimensional map, having a fixed point with 

1 1   at 0  . This generically implies the collision 

and disappearance of two fixed points of αP  as   

passes through zero. Under our assumption on 2 , 

this happens on a one-dimensional attracting 
invariant manifold of αP . Thus, a stable and a saddle 

fixed point are involved in the bifurcation. Each fixed 
point of the Poincare map corresponds to a limit cycle 
of the continuous-time system. Therefore, two limit 
cycles (stable and saddle) collide and disappear in the 
system at this bifurcation. 
 

 
Fig. (5): Hopf bifurcation behaviour 
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Fig. (6): Hopf bifurcation behaviour 

 
Fig. (7): Fold bifurcation of limit cycles 

 

 

5. Conclusion 

In the present paper, an electric arc furnace model 

based on the instantaneous power balance was used. 

Stability analysis of the arc furnace based on 

bifurcations theory has been presented in the present 

contribution. Based on both analytic investigation 

and computer simulation was observed that a 

bifurcation parameter led to a sub-critical Hopf 

bifurcation which in turn resulted in stable and 

unstable zones. It was shown that Hopf bifurcation is 

the basis for the emergence of unstable periodic 

oscillations. It has been demonstrated that bifurcation 

theory allows a qualitative assessment and 

identification of the expected system dynamics at 

different operation points without resorting to time-

domain simulations. In fact, projection method was 

applied to find out the kind of Hopf bifurcation. Also 

a fold bifurcation of cycles took place for some value 

of the bifurcation parameter. It should be remarked 

that the Hopf bifurcation and also fold bifurcation of 

cycles were obtained for inductance values well 

within the system operation range. 
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