Soft Switching Interleaved Boost Converter with Simple Auxiliary Circuit and Reduced Voltage Stress
Subject Areas : Renewable energyOmid Haghparast Naeini 1 , Mahdi Shaneh 2 * , Mohamad Reza Mohammadi 3
1 - Department of Electrical Engineering- Najafabad Branch, Islamic Azad University, Najafabad, Iran
2 - Smart Microgrid Research Center- Najafabad Branch, Islamic Azad University, Najafabad, Iran
3 - Department of Electrical and Computer Engineering- University of Alberta, Alberta, Canada
Keywords: Interleaved boost converter, soft switching technique, zero voltage switching, zero current switching,
Abstract :
The interleaved boost converters are the power circuits that provide high-voltage, high-power with regulated output voltage for renewable energy systems which are generally suffer from low-voltage and unregulated output voltages. The soft switching methods reduce electromagnetic noises and switching losses in these converters. In this paper, a ZVT interleaved boost converter with a simple auxiliary circuit is proposed. The proposed converter has a simple structure with low size and cost. In the proposed converter, soft switching condition is provided without any extra voltage and current stress on the main switches. The auxiliary circuit comprises two diodes and one auxiliary switch. The leakage inductance of the utilized coupled inductors is used as resonant inductor. The auxiliary switches benefit from significantly reduced voltage stress without requiring floating gate driver. The proposed converter can achieve zero voltage switching operation for the main switches and zero current switching for diodes and auxiliary switches, which causes to alleviate the reverse recovery problems of all diodes.
[1] R. Eskandari, E. Babaei, M. Sabahi, S.R. Ojaghkandi, "Interleaved high step-up zero-voltage zero-current switching boost DC–DC converter", IET Power Electronics, vol. 13, no. 1, pp. 96-103, Jan. 2020 (doi: 10.1049/iet-pel.2019.0134).
[2] C. Wang, C. Lin, C. Lu, J. Li, “Design and realization of a zero-voltage transition pulse-width modulation interleaved boost power factor correction converter”, IET Power Electronics, vol. 8, no. 8, pp. 1542-1551, April 2015 (doi: 10.1049/iet-pel.2014.0313).
[3] N. Hematian, M. Jabari, “Simulation and implementation a non-isolated buck converter at ZCS condition”, Journal of Intelligent Procedures in Electrical Technology, vol. 4, no. 15, pp. 67-73, Dec. 2013 (dor: 20.1001.1.23223871.1392.4.15.7.5) (in Persian).
[4] O. Sharifiyana, M. Dehghani, G. Shahgholian, S. Mirtalaee, M. Jabbari, “Overview of dc-dc non-insulated boost converters (Structure and improvement of main parameters)”, Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 48, pp. 1-29, March 2022 (dor: 20.1001.1.23223871.1400.12.48.6.6) (in Persian).
[5] B. Akhlaghi, N. Molavi, M. Fekri, H. Farzanehfard, “High step-up interleaved ZVT converter with low voltage stress and automatic current sharing”, IEEE Trans. on Industrial Electronics, vol. 65, no. 1, pp. 291–299, Jan. 2018 (doi: 10.1109/TIE.2017.2723861).
[6] C.G. Zogogianni, E.C. Tatakis, V. Porobic, “Investigation of a non-isolated reduced redundant power processing dc/dc converter for high-power high step-up applications”, IEEE Trans. on Power Electronics, vol. 34, no. 6, pp. 5229– 5242, June 2019 (doi: 10.1109/TPEL.2018.2868165).
[7] C. Wang, C. Lin, C. Lu, J. Li, “Analysis, design, and realization of a ZVT interleaved boost dc-dc converter with single ZVT auxiliary circuit”, IET Power Electronics, vol. 10, no. 14, pp. 1789-1799, Nov. 2017 (doi: 10.1049/iet-pel.2015.0288).
[8] B. Akhlaghi, M. Esteki, H. Farzanehfard, “Family of zero voltage transition interleaved converters with low voltage and current stress”, IET Power Electronics, vol. 11, no. 12, pp. 1886-1893, April 2018 (doi: 10.1049/iet-pel.2017.0656).
[9] C. Wang, C. Lu, C. Lin, J. Li, “A ZVS-PWM interleaved boost DC/DC converter”, Proceeding of the IEEE/TECON, pp. 1-4, , Xi'an, China, Oct. 2013 (doi: 10.1109/TENCON.2013.6718841).
[10] X. Hu, W. Liang, X. Liu, Z. Yu, “A hybrid interleaved dc-dc converter with a wide step-up regulation range and ultralow voltage stress”, IEEE Trans. on Industrial Electronics, vol. 67, no. 7, pp. 5479–5489, July 2020 (doi: 10.1109/TIE.2019.2931264).
[11] H. Wu, T. Mu, H. Ge, Y. Xing, "Full-range soft-switching-isolated buck-boost converters with integrated interleaved boost converter and phase-shifted control", IEEE Trans. on Power Electronics, vol. 31, no. 2, pp. 987-999, Feb. 2016 (doi: 10.1109/TPEL.2015.2425956).
[12] A. Bagherian, T. Nouri, M. Shaneh, M. Radmehr, “An interleaved ZVS ultra‐large gain converter for sustainable energy systems applications”, IET Power Electronics, vol. 14, no. 9, pp. 1606-1621, July 2021.
[13] M. R. Mohammadi, H. Farzanehfard, E. Adib, "Soft-switching bidirectional buck/boost converter with a lossless passive snubber", IEEE Trans. on Industrial Electronics, vol. 67, no. 10, pp. 8363-8370, Oct. 2020 (doi: 10.1109/TIE.2019.2947850).
[14] M.R. Mohammadi, "A lossless turn-on snubber for reducing diode reverse recovery losses in bidirectional buck/boost converter", IEEE Trans. on Industrial Electronics, vol. 67, no. 2, pp. 1396-1399, Feb. 2020 (doi: 10.1109/TIE.2019.2901642).
[15] M.R. Mohammadi, B. Poorali, S. Eren, M. Pahlevani, "A nonisolated TCM bidirectional converter with low input-current-ripple for DC microgrids", IEEE Trans. on Industrial Electronics, vol. 68, no. 11, pp. 10845-10855, Nov. 2021 (doi: 10.1109/TIE.2020.3036213).
[16] M. Moradian, K. Rahimi, M. Pakdel, “A new soft-switched three-phase four-wire shunt active power filter”, Journal of Intelligent Procedures in Electrical Technology, vol. 1, no. 2, 2, pp. 59-65, Sept. 2010 (dor: 20.1001.1.23223871.1389.1.2.8.9) (in Persian).
[17] A. Kianpour, M. Jabbari, G. Shahgholian, "High step-up floating-output interleaved-input coupled-inductor-based boost converter", Proceeding of the IEEE/ICEE, pp. 1088-1093, Shiraz, Iran , May 2016 (doi: 10.1109/IranianCEE.2016.7585683).
[18] A. S. Babokany, M. Jabbari, G. Shahgholian, M. Mahdavian, "A review of bidirectional dual active bridge converter", Proceeding of the IEEE/ECTICON. pp. 1-4, Phetchaburi, Thailand, May 2012 (doi: 10.1109/ECTICon.2012.6254316).
[19] M.R. Mohammadi, "An active-clamping ZVS interleaved buck/boost bidirectional converter with one auxiliary switch", IEEE Trans. on Industrial Electronics, vol. 67, no. 9, pp. 7430-7438, Sept. 2020 (doi: 10.1109/TIE.2019.2945284).
[20] M.R. Mohammadi, H. Peyman, M.R. Yazdani, S.M.M. Mirtalaei, "A ZVT bidirectional converter with coupled-filter-inductor and elimination of input current notches", IEEE Trans. on Industrial Electronics, vol. 67, no. 9, pp. 7461-7469, Sept. 2020 (doi: 10.1109/TIE.2019.2944065).
[21] A. Rahimi, M.R. Mohammadi, “Zero-voltage-transition synchronous DC-DC converters with coupled inductors”, Journal of Power Electronics, vol. 16, no. 1, pp. 74-83, Jan. 2016 (doi: 10.6113/JPE.2016.16.1.74).
[22] M. Rezvanyvardom, E. Adib, H. Farzanehfard, "Zero-current transition interleaved boost converter", Proceeding of the IEEE/PEDSTC, Tehran, Iran, pp. 87-91, Feb 2011 (doi: 10.1109/PEDSTC.2011.5742503).
[23] Y. Chen, S. Shiu, R. Liang, "Analysis and design of a zero-voltage-switching and zero-current-switching interleaved boost converter", IEEE Trans. on Power Electronics, vol. 27, no. 1, pp. 161-173, Jan. 2012 (doi: 10.1109/TPEL.2011.2157939).
[24] M.R. Mohammadi, H. Farzanehfard, "New family of zero-voltage-transition PWM bidirectional converters with coupled inductors", IEEE Trans. on Industrial Electronics, vol. 59, no. 2, pp. 912-919, Feb. 2012 (doi: 10.1109/TIE.2011.2148681).
[25] B. Akhlaghi, H. Farzanehfard, "Family of ZVT interleaved converters with low number of components", IEEE Trans. on Industrial Electronics, vol. 65, no. 11, pp. 8565-8573, Nov. 2018 (doi: 10.1109/TIE.2018.2808915).
[26] R.T. Li, C.N.M. Ho, "An active snubber cell for N-phase interleaved dc-dc converters", Proceeding of the IEEE/PEAC, pp. 953-958, Shanghai, China, Nov. 2014 (doi: 10.1109/PEAC.2014.7037988).
[27] H. Tarzamni, E. Babaei, A.Z. Gharehkoushan, M. Sabahi, "Interleaved full ZVZCS DC–DC boost converter: analysis, design, reliability evaluations and experimental results", IET Power Electronics, vol. 10, no. 7, pp. 835-845, Feb. 2017 (doi: 10.1049/iet-pel.2016.0578).
_||_