Design of Novel Low-Power Single-Loop Sigma-Delta Modulator by Reduction of Amplifiers in the Loop-Filter for Speech Recognition Applications
Subject Areas : Renewable energySahar Doolabi 1 , Mehdi Taghizadeh 2 * , Mohammad Hossein Fatehi 3 , Jasem Jamali 4
1 - Department of Electrical Engineering- Kazerun Branch, Islamic Azad University, Kazerun, Iran
2 - Department of Electrical Engineering- Kazerun Branch, Islamic Azad University, Kazerun, Iran
3 - Department of Electrical Engineering- Kazerun Branch, Islamic Azad University, Kazerun, Iran
4 - Department of Electrical Engineering- Kazerun Branch, Islamic Azad University, Kazerun, Iran
Keywords: Sigma Delta Modulator, Low Distortion Technique, Noise-Coupled, infinite impulse response filter,
Abstract :
In this paper, a novel general architecture for single-loop Sigma-Delta Modulator is presented by combination low-distortion and noise-coupled techniques for high-resolution low-power applications. The low-distortion technique in the proposed architecture makes its signal transfer function equal to one. In addition, the noise-coupled technique increases the order of quantization noise shaping at the modulator output. The purpose of using these techniques in design of the architecture is to increase the order of the modulator without needing to additional operational amplifiers during its circuit implementation to finally achieve a low-power modulator compared to similar ones. To reduce the required amplifiers, a second order infinite impulse response (IIR) filter was used instead of an integrator in the modulator loop. To evaluate the performance of the proposed structure, its implementation and simulation for speech recognition application, i.e., digital hearing aids, were performed in 180nm CMOS (complementary metal-oxide semiconductor) technology. For a third-order structure with a sampling rate of 64 and an input sine signal of -6dBFS and a sampling frequency of 2.56MHz, the signal to noise and distortion (SNDR) is 81.9dB and the dynamic range (DR) is 88dB. The power consumption of the modulator is 126.9 μW and its bandwidth is 20 KHz. The results of circuit and system level simulations prove its performance.
[1] K. Nam, S. Lee, D. Su, A. Wooley, “A low-voltage low-power sigma-delta modulator for broadband analog-to-digital conversion”, IEEE Journal of Solid-State Circuits, vol. 40, no. 9, pp. 1855-1864, Sep 2005 (doi: 10.1109/JSSC.2005.852161).
[2] S. Alizadeh Zanjani, A. Jannesari, P. Torkzadeh, “Design and simulation of ultra-low-power sigma-delta converter using the fully differential inverter-based amplifier for digital hearing aids application”, Journal of Intelligent Procedures in Electrical Technology, vol. 13, no. 51, pp. 75-90, Dec 2022 (in Persian) (dor: 20.1001.1.23223871.1401.13.51.5.8).
[3] M. Taghizadeh, S. Sadughi, “Improved unity-STF sturdy MASH ΣΔ modulator for low-power wideband applications”, Electronics Letters, vol. 51, no. 23, pp. 1941-1942, Oct. 2015 (doi: 10.1049/el.2015.1976).
[4] J.A. Torreño, S. Paton, L. Conesa-Peraleja, L. Hernandez, D. Straeussnigg, “A noise coupled ΣΔ architecture using a non uniform quantizer”, Proceeding of the IEEE/NORCAS, pp. 1-4, Oslo, Norway, Oct. 2015 (doi: 10.1109/NORCHIP.2015.7364400).
[5] A.P. Perez, E. Bonizzoni, F. Maloberti, “A 84dB SNDR 100 kHz bandwidth low-power single op-Amp third-order ΔΣ modulator consuming 140μW”, Proceeding of the IEEE/ISSCC, pp. 478-480, San Francisco, USA, Feb 2011 (doi: 10.1109/ISSCC.2011.5746405).
[6] V. Sharma, Y.B.N. Kumar, M.H. Vasantha, “36 μW fourth order sigma-delta modulator using single operational amplifier”, International Journal of Electronics Letters, vol. 9, no. 2, pp. 171-186, Jan. 2021 (doi: 10.1080/21681724.2020.1717003).
[7] X. Meng, Y. Zhang, T. He and G.C. Temes, “Low-distortion wideband delta-sigma ADCs with shifted loop delays”, IEEE Trans. on Circuits and Systems, vol. 62, no. 2, pp. 376–384, Feb. 2015 (doi: 10.1109/TCSI.2014.2362972).
[8] J.R. Custódio, J. Goes, N. Paulino, J.P. Oliveira, E. Bruun, “A 1.2-V 165μW 0.29-mm 2 multibit sigma-delta ADC for hearing aids using nonlinear DACs and with over 91 dB dynamic-range", IEEE Trans. on Biomed. Circuits and Systems, vol. 7, no. 3, pp. 376-385, June 2013 (doi: 10.1109/TBCAS.2012.22 038-19).
[9] M.C. Huang, S.I. Liu, “A fully-differential comparator based switched-capacitor delta-sigma modulator”, IEEE Trans. on Circuits and Systems, vol. 56, no. 5, pp. 369-373, May 2009 (doi: 10.1109/TCSII.2009.2019166).
[10] M. Zamani, M. Taghizadeh, M. Naser. Moghadasi, B.S. Virdee, “A 5th-order ΣΔ modulator with combination of op-amp and CBSC circuit for ADSL applications”, Analog Integrated Circuits and Signal Processing, vol. 62, no. 1, pp. 143–150, Sept. 2011 (doi: 10.1007/s10470-011-9763-x).
[11] J. Silva, U. Moon, J. Steensgaard, G. Temes, “Wideband low distortion delta-sigma ADC topology”, Electronics Letters, vol. 37, no. 12, pp. 737–738, June 2001 (doi: 10.1049/el:20010542).
[12] K. Lee, J. Chae, M. Aniya, K. Hamashita, K. Takasuka, S. Takeuchi, G.C. Temes, “A noise-coupled time-interleaved ΔΣ ADC with 4.2MHz BW, -98dB THD, and 79dB SNDR”, IEEE Solid-State Circuit Journal, vol. 43, no. 12, pp. 2601-2612, Dec. 2008 (doi:10.1109/JSSC.2008.2006311).
[13] R. Schreier, G.C. Temes, “Understanding delta-sigma data converters”, Wiley/IEEE Press, 2005.
14] J. Markus, G.C. Temes, “An efficient ΔΣ ADC architecture for low oversampling ratios”, IEEE Trans. on Circuits and Systems, vol. 51, no. 1, pp. 63-71, Jan. 2004 (doi: 10.1109/TCSI.2003.821280).
[15] P. Malcovati, S. Brigati, F. Francesconi, F. Maloberti, P. Cusinato, A. Baschirotto, “Behavioral modeling of switched-capacitor sigma-delta modulators”, IEEE Trans. on Circuits and Systems, vol. 50, no. 3, pp. 352-364, Mar 2003 (doi: 10.1109/TCSI.2003.808892).
[16] S. Rabii, B. Wooley, “A 1.8V digital-audio sigma-delta Modulator in 0.8μm CMOS”, IEEE Journal of Solid-State Circuits, vol. 32, no. 6, pp. 783-796, June 1997 (doi: 10.1109/4.585245).
[17] J. Ruı´z-Amaya, J.M. Rosa, F.V. Ferna´ndez, F. Medeiro, R. del Rı´o, B. Pe´rez-Verdu´, A. Rodrı´guez-Va´zquez, “High-level synthesis of switched-capacitor, switched-current and continuous-time ΣΔ modulators using SIMULINK-based time-domain behavioral models”, IEEE Trans. on Circuits and Systems, vol. 52, no. 9, pp. 1795–1810, Sept. 2005 (doi: 10.1109/TCSI.2005.852479).
[18] M. Yavari, O. Shoaei, “Low-voltage low-power fast settling CMOS operational transconductance amplifiers for switched-capacitor applications”, IEEE Proceeding Circuits, Devices and Systems, vol. 151, no. 6, pp. 573-578, Dec. 2004 (doi: 10.1109/LPE.2003.1231910).
[19] S.M.A. Zanjani, M. Parvizi, “Design and simulation of a bulk driven operational trans-conductance ampli-fier based on CNTFET technology”, Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 45, pp. 65-76, Spring 2021 (in Persian) (dor: 20.1001.1.23223871.1400.12.1.5.1).
[20] N. Chamanpira, S.M.A. Zanjani, M. Dolatshahi, “Design and simulation of a new sample and hold circuit with a resulation of 12-bit and a sampling rate of 1 GS/s using a dual sampling technique”, Journal of Intelligent Procedures in Electrical Technology, vol. 9, no. 34, pp. 3-10, Aug. 2018 (in Persian) (dor: 20.1001.1.23223871.1397.9.34.1.2).
[21] M. Taghizadeh, S. Sadughi, M. Sharifkhani, “Optimal design of low-power high-resolution unity-STF S-MASH sigma delta modulator for telecommunication applications”, Electronic and Cyber Defense, vol. 7, no. 2, pp. 13-24, Summer 2019 (in Persian).
[22] A. K. Varma, M. Steer and P. D. Franzon, “Improving behavioral IO buffer modeling based on IBIS”, IEEE Transactions on Advanced Packaging, vol. 31, no. 4, pp. 711-721, Nov. 2008, (doi: 10.1109/TADVP.2008.2004995).
[23] J.E. Park, Y.H. Hwang, D.K. Jeong, “A 0.4-to-1 V voltage scalable delta-sigma ADC with two-step hybrid integrator for IoT sensor applications in 65-nm LP CMOS”, IEEE Trans. on Circuits and Systems, vol. 64, no. 12, pp. 1417-1421, Dec 2017 (doi: 10.1109/TCSII.2017.2753841).
_||_