A Triangular Patch Antenna with a Trapezoidal Fractal with Two Sublayers with Complementary Layers
Subject Areas : Renewable energyMohammadreza Sepehri 1 , Mohammad Amin Honarvar 2
1 - Department of Electrical Engineering- Najafabad Branch, Islamic Azad University, Najafabad, Iran
2 - Digital Processing and Machine Vision Research Center- Najafabad Branch, Islamic Azad University, Najafabad, Iran
Keywords: antenna, microstrip technology, trapezoidal fractal, complementary layer,
Abstract :
In this paper, the improvement of the radiation pattern and the properties of multi-band trapezoidal fractal antenna with self-complementary layers have been investigated. The antenna is excited by a microstrip feed-line with two sub-layers to increase bandwidth and improve the radiation pattern. The dual-layered complementary arrangement has had positive effects on the resonance frequencies and improved the properties of the radiation patterns. This antenna offers a good efficiency, suitable bandwidth, and radiated pattern in a designed resonance frequency. Six bands (S11<-15 dB), with center frequencies of f1=0.9 GHz, f2=1.57 GHz, f3=1.85 GHz, f4=2.15 GHz, f5=2.5 GHz and f6=3.5 GHz are obtained within the band of (0.5-4) GHz. This antenna offers good efficiency which changes from 70% to 95%. The measurement results clearly confirm the simulation results
[1] M. Vaheb, A. Hashemi, H. Emami, M. Emami, “Design and simulation of a sample of integrated broadband antenna and omni-directional for marine floats”, Journal of Intelligent Procedures in Electrical Technology, vol. 7, no. 25, pp. 29-40, Spring 2016 (dor: 20.1001.1.23223871.1395.7.25.4.3) (in Persian).
[2] M. Zobeyri, A. Eskandari, “Design and fabrication of novel single- and dual-band bandpass filters with modern zero-degree feed structure for wireless communications”, Journal of Intelligent Procedures in Electrical Technology, vol. 9, no. 33, pp. 47-61, Spring 2018 (dor: 20.1001.1.23223871.1397.9.33.5.4) (in Persian).
[3] C. Mahajan, V. Vyas, “Wine glass shaped microstrip antenna with woodpile structure for wireless applications”, Majlesi Journal of Electrical Engineering, vol. 13, no. 1, pp. 37-44, March 2019.
[4] E. Shirazi, M. Honarvar, “Design and simulation of a novel broadband circularly polarized microstrip slot antenna”, Journal of Intelligent Procedures in Electrical Technology, vol. 7, no. 26, pp. 45-52, Summer 2016 (doi: 20.1001.1.23223871.1395.7.26.5.6).
[5] F. Pizarro, D. Ramírez-Gil, A. Algaba-Brazález, L. F. Herrán-Ontanón, E. Rajo-Iglesias, “Comparison study of 4×4 butler matrices in microstrip technologies for Ka-band”, AEU- International Journal of Electronics and Communications, vol. 122, Article Number: 153248, July 2020 (doi: 10.1016/j.aeue.2020.153248).
[6] D.V. Kiran, D. Sankaranarayanan, B. Mukherjee, "Compact embedded dual-element rectangular dielectric resonator antenna combining sierpinski and minkowski fractals", IEEE Trans. on Components, Packaging and Manufacturing Technology, vol. 7, no. 5, pp. 786-791, May 2017 (doi: 10.1109/TCPMT.2017.2690463).
[7] K. Wong, H. Chang, C. Wang, S. Wang, "Very-low-profile grounded coplanar waveguide-fed dual-band WLAN slot antenna for on-body antenna application", IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 1, pp. 213-217, Jan. 2020 (doi: 10.1109/LAWP.2019.2958961).
[8] S. Su, C. Lee, S. Chen, "Very-low-profile, triband, two-antenna system for WLAN notebook computers", IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 9, pp. 1626-1629, Sept. 2018 (doi: 10.1109/LAWP.2018.2858849).
[9] H. Huang, Y. Liu, S. Zhang, S. Gong, "Multiband metamaterial-loaded monopole antenna for WLAN/WiMAX applications", IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 662-665, 2015 (doi: 10.1109/LAWP.2014.2376969).
[10] G. Li, H. Zhai, Z. Ma, C. Liang, R. Yu, S. Liu, "Isolation-improved dual-band MIMO antenna array for LTE/WiMAX mobile terminals", IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1128-1131, 2014 (doi: 10.1109/LAWP.2014.2330065).
[11] Y. Ban, J. Chen, S. Sun, J.L. Li, J. Guo, "Printed monopole antenna with a long parasitic strip for wireless USB dongle LTE/GSM/UMTS operation", IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 767-770, 2012 (doi: 10.1109/LAWP.2012.2205549).
[12] J. Lu, Y. Wang, "Internal uniplanar antenna for LTE/GSM/UMTS operation in a tablet computer", IEEE Trans. on Antennas and Propagation, vol. 61, no. 5, pp. 2841-2846, May 2013 (doi: 10.1109/TAP.2013.2243693).
[13] S. Velan, E.F. Sundarsingh, M. Kanagasabai, A.K. Sarma, C. Raviteja, R. Sivasamy, J.K. Pakkathillam, "Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications", IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 249-252, 2015 (doi: 10.1109/LAWP.2014.2360710).
[14] S. Zheng, Y. Yin, J. Fan, X. Yang, B. Li, W. Liu, "Analysis of miniature frequency selective surfaces based on fractal antenna–filter–antenna arrays", IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 240-243, 2012 (doi: 10.1109/LAWP.2012.2189749).
[15] A. Amini, H. Oraizi, M.A. Chaychi-zadeh, "Miniaturized UWB log-periodic square fractal antenna", IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 1322-1325, March 2015 (doi: 10.1109/LAWP.2015.2411712).
[16] A. Mohanty, S. Sahu, “Compact wideband hybrid fractal antenna loaded on AMC reflector with enhanced gain for hybrid wireless cellular networks”, AEU- International Journal of Electronics and Communications, vol. 138, Article Number: 153837, Aug. 2021 (doi: 10.1016/j.aeue.2021.153837).
[17] Y. Lin, S.S.H. Hsu, "A sierpinski space-filling clock tree using multiply-by-3 fractal-coupled ring oscillators", IEEE Journal of Solid-State Circuits, vol. 52, no. 11, pp. 2947-2962, Nov. 2017 (doi: 10.1109/JSSC.2017.2732730).
[18] E. Volkov, E.H. Hellen, “The effect of characteristic times on collective modes of two quorum sensing coupled identical ring oscillators”, Chaos, Solitons & Fractals, vol. 151, Article Number: 111176, Oct. 2021 (doi: 10.1016/j.chaos.2021.111176).
[19] J.R. Crute, L.E. Davis, "Loss characteristics of high-/spl epsiv//sub r/ microstrip lines fabricated by an etchable thick-film on ceramic MCM technology", IEEE Trans. on Advanced Packaging, vol. 25, no. 3, pp. 393-396, Aug. 2002 (doi: 10.1109/TADVP.2002.805551).
[20] N. Malekpour, M. Honarvar, A. Dadgarpour, “Design and simulation of a compact UWB MIMO antenna with mutual coupling reduction”, Journal of Intelligent Procedures in Electrical Technology, vol. 7, no. 25, pp. 15-20, Spring 2016 (dor: 20.1001.1.23223871.1395.7.25.2.1) (in Persian).
[21] R. Dehghani, R. Aghajani, “Angular resolution enhancement of the MIMO radar by using the 2D nested array method”, Journal of Intelligent Procedures in Electrical Technology, vol. 11, no. 43, pp. 1-12, Autumn 2020 (dor: 20.1001.1.23223871.1399.11.43.1.4) (in Persian).
[22] D. Tiwari, J.A. Ansari, A. Saroj, M. Kumar, “Analysis of a miniaturized hexagonal sierpinski gasket fractal microstrip antenna for modern wireless communications”, AEU- International Journal of Electronics and Communications, vol. 123, Article Number: 153288, Aug. 2020 (doi: 10.1016/j.aeue.2020.153288).
[23] O. Devesh, J.A. Ansari, M.G. Siddiqui, A.K. Saroj, “Analysis of Modified Square Sierpinski Gasket fractal microstrip antenna for Wireless communications”, AEU- International Journal of Electronics and Communications, vol. 94, pp. 377-385, Sept. 2018 (doi: 10.1016/j.aeue.2018.07.027).
[24] A. Mohanty, B.R. Behera, “Insights on radiation modes and pattern diversity of two element UWB fractal MIMO antenna using theory of characteristics modes analysis”, AEU- International Journal of Electronics and Communications, vol. 135, Article Number: 153726, June 2021 (doi: /10.1016/j.aeue.2021.153726).
[25] C. P. Baliarda, J. Romeu, A. Cardama, “The kochmonopole: A small fractal antenna”, IEEE Trans. on Antenna and Propagation, vol. 48, no. 11, pp. 1773-1781, Nov. 2000 (doi: 10.1109/8.900236).
[26] S. Kumar, S. Srivastava, A.D. Pandey, M.R. Tripathy “Design of miniaturized fractal antenna on two-layer stack”, International Journal of Enhanced Research in Science Technology and Engineering, vol. 3, no. 8, Aug. 2014.
[27] Y. Wang, Z. Wang, J. Li, "UHF moore fractal antennas for online GIS PD detection", IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 852-855, 2017 (doi: 10.1109/LAWP.2016.2609916).
[28] K.C. Hwang, "A modified sierpinski fractal antenna for multiband application", IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 357-360, Oct. 2007 (doi: 10.1109/LAWP.2007.902045).
[29] U. Keshwala, S. Rawat, K. Ray, "Design and analysis of eight petal flower shaped fractal antenna for THz applications”, Optik, vol. 241, Article Number: 166942, Sept. 2021 (doi: 10.1016/j.ijleo.2021.166942).
[30] A. Zohur, H. Mopidevi, D. Rodrigo, M. Unlu, L. Jofre, B.A. Cetiner, "RF MEMS reconfigurable two-band antenna", IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 72-75, 2013 (doi: 10.1109/LAWP.2013.2238882).
[31] P.S.R. Chowdary, A.M. Prasad, P.M. Rao, "Design of modified sierpinski antenna for WLAN applications”, Proceeding of the IEEE/ICECS, pp. 1-4, Coimbatore, India Feb. 2014 (doi: 10.1109/ECS.2014.6892769).
[32] G.F. Tsachtsiris, C.F. Soras, M.P. Karaboikis, V.T. Makios, "Analysis of a modified sierpinski gasket monopole antenna printed on dual band wireless devices", IEEE Trans. on Antenna and Propagation, vol. 52, no. 10, Oct. Oct. 2004 (doi: 10.1109/TAP.2004.834088).
_||_