Robust DOA Estimation in the Presence of Mutual Coupling effect with Application in Auxiliary Vehicle Positioning
Subject Areas : Renewable energyZahra Dehghani 1 , Naser Parhizgar 2 * , Hamid Azad 3
1 - Department of Electrical Engineering- Shiraz Branch, Islamic Azad University, Shiraz, Iran
2 - Department of Electrical Engineering- Shiraz Branch, Islamic Azad University, Shiraz, Iran
3 - Department of Electrical Engineering- Shiraz Branch, Islamic Azad University, Shiraz, Iran
Keywords: vehicle positioning, direction of arrival estimation, mutual coupling effect, mutual impedance matrix, vehicle of internet,
Abstract :
As an important branch of the Internet of Vehicles (IoV), vehicle positioning has drawn extensive attention. Traditional positioning systems based on a global positioning system incur long delays, and may fail due to obstructions. In this article, we propose an auxiliary positioning architecture, whose core is to estimate the direction of arrival (DOA) of signals from landmarks, such as wireless access points, utilizing a sensor array in the vehicle. Due to space limitations, the array may be placed in an arbitrary geometry and may suffer from mutual coupling effects, and it is possible that the effect of mutual coupling between the array elements greatly reduces the independence of the elements of the array, and this effect involves the interaction of each element with its nearby objects. Mutual coupling in antenna arrays can critically degrade the performance of signal processing algorithms. In this paper, a new and accurate form of mutual impedance matrix (MIM) is used to compensate for the effect of mutual coupling in uniform linear arrays (ULA) by a new method based on solving the boundary value problem for all array elements. By using the MIM in the DOA estimation algorithms, these algorithms will be robust to the mutual coupling effect. The simulation results confirm the performance improvement of the proposed DOA estimation algorithm. The proposed architecture can obtain robust self-localization with existing vehicular ad hoc networks, and it can collaborate with other positioning systems to provide a safe driving environment.
[1] H. Peng, L. Liang, X. Shen, G.Y. Li, “Vehicular communications: A network layer perspective”, IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1064–1078, Feb. 2019 (doi: 10.1109/TVT.2018.2833427).
[2] Q. Yuan, H. Zhou, Z. Liu, J. Li, F. Yang, X. Shen, “CESense: Costeffective urban environment sensing in vehicular sensor networks”, IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 9, pp. 3235–3246, Sept. 2019 (doi: 10.1109/TITS.2018.2873112).
[3] W. Xu, S. Wang, S. Yan, J. He, “An efficient wideband spectrum sensing algorithm for unmanned aerial vehicle communication networks”, IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1768–1780, April 2019 (doi: 10.1109/JIOT.2018.2882532).
[4] H. Huang, J. Yang, Y. Song, H. Huang, G. Gui, “Deep learning for super-resolution channel estimation and DOA estimation based massive MIMO system”, IEEE Trans. on Vehicular Technology, vol. 67, no. 9, pp. 8549–8560, Sept. 2018 (doi: 10.1109/VTCFall.2018.8691023).
[5] H. Huang, Y. Song, J. Yang, G. Gui, F. Adachi, “Deep-learningbased millimeter-wave massive MIMO for Hybrid Precoding”, IEEE Trans. on Vehicular Technology, vol. 68, no. 3, pp. 3027-3032, March 2019 (doi: 10.1109/TVT.2019.2893928).
[6] A. Conti, S. Mazuelas, S. Bartoletti, W.C. Lindsey, M.Z. Win, “Soft information for localization-of-things”, Proceeding of the IEEE, vol. 107, no. 11, pp. 2240–2264, Nov. 2019 (doi: 10.1109/JPROC.2019.2905854).
[7] S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, A. Mouzakitis, “A survey of the state-of-the-art localization techniques and their potentials for autonomous vehicle applications IEEE Internet of Things Journal, vol. 5, no. 2, pp. 829–846, Apr. 2018 (doi: 10.1109/JIOT.2018.281230).
[8] G. Soatti, M. Nicoli, N. Garcia, B. Denis, R. Raulefs, H. Wymeersch, “Implicit cooperative positioning in vehicular networks”, IEEE Trans. on Intelligent Transportation Systems, vol. 19, no. 12, pp. 3964–3980, Dec. 2018 (doi: 10.1109/TITS.2018.2794405).
[9] H. Zhu, K. Yuen, L. Mihaylova, H. Leung, “Overview of environment perception for intelligent vehicles”, IEEE Trans. on Intelligent Transportation Systems, vol. 18, no. 10, pp. 2584–2601, Oct. 2017 (doi: 10.1109/TITS.2017.2658662).
[10] A. Saucan, T. Chonavel, C. Sintes, J. Le Caillec, “CPHD-DOA tracking of multiple extended sonar targets in impulsive environments”, IEEE Trans. Signal Process, vol. 64, no. 5, pp. 1147–1160, Mar. 2016 (doi: 10.1109/TSP.2015.2504349).
[11] H. Wang, L. Wan, M. Dong, K. Ota, X. Wang, “Assistant vehicle localization based on three collaborative base stations via SBL-based robust DOA estimation”, IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5766–5777, Jun. 2019 (doi: 10.1109/JIOT.2019.2905788).
[12] H. Wymeersch, G. Seco-Granados, G. Destino, D. Dardari, F. Tufvesson, “5G mmWave positioning for vehicular networks”, IEEE Wireless Communications, vol. 24, no. 6, pp. 80–86, Dec. 2017 (doi: 10.1109/MWC.2017.1600374).
[13] Z. Abu-Shaban, X. Zhou, T. Abhayapala, G. Seco-Granados, H. Wymeersch, “Error bounds for uplink and downlink 3D localization in 5G millimeter wave systems”, IEEE Wireless Communications, vol. 17, no. 8, pp. 4939–4954, Aug. 2018 (doi: 10.1109/TWC.2018.2832134).
[14] Y. Wang, Y. Wu, Y. Shen, “Joint spatiotemporal multipath mitigation in large-scale array localization”, IEEE Trans. on Signal Processing, vol. 67, no. 3, pp. 783–797, Feb. 2019 (doi: 10.1109/TSP.2018.2879625).
[15] F. Wen, C. Mao, G. Zhang, “Direction finding in MIMO radar with large antenna arrays and nonorthogonal waveforms”, Digital Signal Processing, vol. 94, pp. 75–83, Nov. 2019 (doi: 10.1016/j.dsp.2019.06.008).
[16] F. Wen, J. Shi, Z. Zhang, “Joint 2D-DOD, 2D-DOA and polarization angles estimation for bistatic EMVS-MIMO radar via PARAFAC analysis”, IEEE Trans. on Vehicular Technology, vol. 69, no. 2, pp. 1626–1638, Feb. 2020 (doi: 10.1109/TVT.2019.2957511).
[17] A. M. Elbir, “A novel data transformation approach for DOA estimation with 3-D antenna arrays in the presence of mutual coupling”, IEEE Antennas Wireless Propagation Letters, vol. 16, pp. 2118–2121, 2017 (doi: 10.1109/LAWP.2017.2699292).
[18] J.W. Wallace M.A. Jensen, “Mutual coupling in MIMO wireless system: A rigorous network theory analysis”, IEEE Trans Wireless Communications, vol. 3, no. 4, pp. 1317-1325, July 2004 (doi: 10.1109/TWC.2004.830854).
[19] H. Yuan, K. Hirasawa, “The mutual coupling and diffraction effects on the performance of a CMA adaptive array”, IEEE Trans. on Vehicular Technology, vol. 47, pp. 728-736, Aug. 1998 (doi: 10.1109/25.704828).
[20] R.S. Adve, TK. Sarkar, “Compensation for the effects of mutual coupling on direct data domain adaptive algorithms”, IEEE Trans. on Antennas and Propagation, vol. 48, no. 1, pp. 86-94, Jan. 2000 (doi: 10.1109/8.827389).
[21] C.K.E. Lau, R.S. Adve, T.K. Sarkar, “Minimum norm mutual coupling compensation with applications in direction of arrival estimation”, IEEE Trans. on Antennas and Propagation, vol. 52, no. 8, pp. 2034-2040, Aug. 2004 (doi: 10.1109/TAP.2004.832511).
[22] B. Friedlander, A. Weiss, “Direction finding in the presence of mutual coupling”, IEEE Trans. on Antennas and Propagation, vol. 39, no. 3, pp. 273-284, Mar. 1991 (doi: 10.1109/8.76322).
[23] H.T. Hui, “Improved compensation for the mutual coupling effect in a dipole array for direction finding”, IEEE Trans. on Antennas and Propagation, vol. 51, no. 9, pp. 2498-2503, Sept. 2003 (doi: 10.1109/TAP.2003.816303).
[24] T.T. Zhang, H.T. Hui, Y.L. Lu, “Compensation for the mutual coupling effect in the ESPRIT direction finding algorithm by using a more effctive method”, IEEE Trans. on Antennas and Propagation, vol. 53, no. 4, pp. 1552-1555, April 2005 (doi: 10.1109/TAP.2005.844399).
[25] H.T. Hui, “A practical approach to compensate for the mutual coupling effect of an adaptive dipole array”, IEEE Trans. on Antennas and Propagation, vol. 52, no. 5, pp. 1262-1269, May 2004 (doi: 10.1109/TAP.2004.827502).
[26] V.K. Quy, N.T. Ban, N.D. Han, “An advanced energy efficient and high performance routing protocol for MANET in 5G”, Journal of Communications, vol. 13, no. 12, pp. 743-749, Dec. 2018 (doi: 10.12720/jcm.13.12.743-749).
[27] W.C. Gibson, “The method of moment in electromagnetic”, Chapman and Hall/CRC, 2008 (ISBN: 9780367365066).
[28] R.F. Harrington, “Field computation by moment methods”, IEEE Press, New York, 1993 (ISBN: 9780470544631).
[29] N. Parhizgar, A. Alighanbari, M.A. Masnadi-Shirazi, A. Sheikhi, “Mutual coupling compensation for a practical VHF/UHF Yagi-Uda antenna array”, IET Microwaves, Antennas and Propagation, vol. 7, no. 13, pp. 1072-1083, Oct. 2013 (doi: 10.1049/iet-map.2013.0218)
[30] N. Parhizgar, A. Alighanbari, M.A. Masnadi‐Shirazi, A Sheikhi, “A modified decoupling scheme for receiving antenna arrays with application to DOA estimation”, International Journal of RF and Microwave Computer‐Aided Engineering, vol. 23, no. 2, pp. 246-259, March 2013 (doi: 10.1002/mmce.20671).
_||_