A solution to Secrecy Sum Rate Enhancement in 5G Networks Using IRS and NOMA by Cooperative Legal Users
Subject Areas : Telecommunication systemAfshin Souzani 1 , Mohammad Ali Pourmina 2 , Paeiz Azmi 3 , Mohammad Naser Moghadasi 4
1 - Department of Mechanical, Electrical and Computer Engineering- Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Department of Mechanical, Electrical and Computer Engineering- Science and Research Branch, Islamic Azad University, Tehran, Iran
3 - Department of Electrical and Computer Engineering- Tarbiat Modares University, Tehran, Iran
4 - Department of Mechanical, Electrical and Computer Engineering- Science and Research Branch, Islamic Azad University, Tehran, Iran
Keywords: physical layer security, Secrecy sum rate, artificial noise, cooperative network, intelligent reflective surface, non-orthogonal multiple access,
Abstract :
The use of new physical layer security approaches such as intelligent reflective surfaces as well as the use of existing capabilities in the mobile network such as the participation of network users as network partners are solutions that can be very effective in the next generation of mobile telecommunications to improve and increase the total Secrecy Rate in the physical layer.The proposed solution for improving the secrecy rate of the transmitted signal in the physical layer performed by closed-form solution to the described system. In this paper, we analyzed a network consisting of a gNB, two users, an IRS and an eavesdropper in an environment full of obstacles. Using Simulations, we evaluate our solution mathematically and investigate the effect of the eavesdropper location on the total secrecy rate. Also, the analysis and simulation of secrecy rate for the proposed network is performed by taking into account practical network considerations such as changing the location of the Eavesdropper in the network. In addition, the impact of changing the number of elements of smart surface arrays has been analyzed. The numerical results reveal that increasing IRS elements can enhance the ergodic secrecy rate, the reason is that increasing of IRS elements can focuses the main beam of data signal on the first user which increase secrecy rate. Finally, we compare the performance of the OMA and NOMA techniques in the proposed system model. We show that the NOMA technique provides 50% more ergodic secrecy rate compared to the OMA technique.
[1] Q. Wu, R. Zhang, "Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network", IEEE Communications Magazine, vol. 58, no. 1, pp. 106-112, Jan. 2020 (doi: 10.1109/MCOM.001.1900107).
[2] J. Chen, Y.C. Liang, Y. Pei, H. Guo, "Intelligent reflecting surface: A programmable wireless environment for physical layer security", IEEE Access, vol. 7, pp. 82599-82612, June 2019 (doi: 10.1109/ACCESS.2019.2924034).
[3] J. Zhao, "A survey of intelligent reflecting surfaces (IRSs), towards 6G wireless communication networks with massive MIMO 2.0", arXiv: 1907.04789v3 [eess.SP], Aug. 2019.
[4] Q. Wu, R. Zhang, "Beamforming optimization for intelligent reflecting surface with discrete phase shifts", Proceeding of the IEEE/ICASSP, pp. 7830-7833, Brighton, UK, May 2019 (doi: 10.1109/ICASSP, 2019.8683145).
[5] W. Wang, K.C. The, K.H. Li, "Secure cooperative at relaying networks with untrustworthy relay nodes", Proceeding of the IEEE/GLOCOM, pp. 1-6, Washington, DC, USA, Dec. 2016 (doi: 10.1109/GLOCOM.2016.7842250).
[6] A. Kuhestani, A. Mohammadi, M. Mohammadi, "Joint relay selection and power allocation in large-scale MIMO systems with untrusted relays and passive eavesdroppers", IEEE Trans. on Information Forensics and Security, vol. 13, no. 2, Feb. 2018 (doi: 10.1109/TIFS.2018.2750102).
[7] H. He, P. Ren, L. Sun, Q. Du, Y. Wang, "Secure communication using noisy feedback", Proceeding of the IEEE/GLOCOM, pp. 1-6, Washington, DC, USA, Dec. 2016 (doi: 10.1109/GLOCOM.2016.7842249).
[8] B. He, X. Zhou, T.D. Abhayapala, "Achieving secrecy without knowing the number of eavesdropper antennas", IEEE Trans. on Wireless Communication, vol. 14, no. 12, pp. 7030–7043, Dec. 2015 (doi: 10.1109/TWC.2015.2463818).
[9] S. Goel, R. Negi, "Guaranteeing secrecy using artificial noise", IEEE Trans. on Wireless Communication, vol. 7, no. 6, pp. 2180-2189, July 2008 (doi: 10.1109/TWC.2008.060848).
[10] X. Zhou, M. McKay, "Secure transmission with artificial noise over fading channels: achievable rate and optimal power allocation", IEEE Trans. on Vehicular Technology, vol. 59, no. 8, pp. 3831–3842, Aug. 2010 (doi: 10.1109/TVT.2010.2059057).
[11] L. Yang, Y. Jinxia, W. Xie, M. Hasna, T. Tsiftsis, M. Di Renzo, "Secrecy performance analysis of RIS-aided wireless communication systems", IEEE Trans. on Vehicular Technology, vol. 69, no. 10, Oct. 2020 (doi: 10.1109/TVT.2020.3007521).
[12] H. Shen, W. Xu, S. Gong, Z. He, C. Zhao, "Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications", IEEE Communications Letters, vol. 23, no. 9, pp. 1488-1492, Sept. 2019 )doi: 10.1109/LCOMM.2019.2924214(.
[13] L. Dong, H.M. Wang, "Secure MIMO transmission via intelligent reflecting surface", IEEE Wireless Communications Letters, vol.19, no. 6, pp. 7543–7556, Nov. 2020 )doi: 10.1109/TWC.2020.3012721(.
[14] S. Hong, C. Pan, H. Ren, K. Wang, A. Nallanathan, "Artificial-noise-aided secure MIMO wireless communications via intelligent reflecting surface", IEEE Transactions on Communications, vol. 68, no. 12, pp. 7851-7866, Dec. 2020 (doi: 10.1109/TCOMM.2020.3024621).
[15] B. Feng, Y. Wu, M. Zheng, "Secure transmission strategy for intelligent reflecting surface enhanced wireless system", Proceeding of the IEEE/WCSP), pp.1–6, Xi'an, China, Oct. 2019 (doi: 10.1109/WCSP.2019.8928063).
[16] C. Zhang, F Jia, Z Zhang, J Ge, F Gong, "Physical layer security designs for 5G NOMA systems with a stronger near-end internal eavesdropper", IEEE Trans. on Vehicular Technology, vol. 69, no. 11, Nov. 2020 (doi: 10.1109/TVT.2020.3018234).
[17] M. Alageli, A. Ikhlef, F. Alsifiany, M.A.M. Abdullah, G Chen, J. Chambers, "Optimal downlink transmission for cell-free SWIPT massive MIMO systems with active eavesdropping", IEEE Trans. on Information Forensics and Security, vol. 15, pp. 1983–1998, 2020 (doi: 10.1109/TIFS.2019.2954748).
[18] J. Wang, J. Lee, F. Wang, T.Q.S. Quek, "Jamming-Aided Secure Communication in Massive MIMO Rician Channels", IEEE Trans. on Wireless Communications, vol. 14, no. 12, pp. 6854-6868, Dec. 2015 (doi: 10.1109/TWC.2015.2461211).
[19] A. Akbar, S. Jangsher, F.A. Bhatti, "NOMA and 5G emerging technologies: A survey on issues and solution techniques", Computer Networks, vol. 190, Article Number: 107950, May 2021 (doi: 10.1016/j.comnet.2021.107950).
[20] L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, L. Hanzo, "A survey of non-orthogonal multiple access for 5G", IEEE Communication Surveys and Tutorials, vol. 20, no. 3, pp. 2294–2323, 2018 (doi: 10.1109/COMST. 2018.2835558).
[21] W. Shin, M. Vaezi, B. Lee, D.J. Love, J. Lee, H.V. Poor, "Non-orthogonal multiple access in multi-cell networks: theory, performance, and practical challenges", IEEE Communications Magazine,vol. 55, no. 10, pp. 176-183, Oct. 2017 (doi: 10.1109/MCOM.2017.1601065).
[22] K. Higuchi, A. Benje, "Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access", IEICE Trans. Wireless Communication, vol. 98–b, no.3, March 2015 (doi: 10.1587/transcom. E98.B.403).
[23] H.M. Furqan, J.M. Hamamrehy, H. Arslan, "Physical layer security for NOMA: requirements, metrics, challenges, and recommendations", arXiv: 1905.05064v2 [eess. SP] 14 May 2019.
[24] Y. Zhang, H.M. Wang, Q. Yang, Z. Ding, “Secrecy sum rate maximization in nonorthogonal multiple access”, IEEE Communications Letters, vol. 20, no. 5, pp. 930–933, May 2016 (doi: 10.1109/LCOMM. 2016.2539162).
[25] L. Lv, Z. Ding, Q. Ni, J. Chen, “Secure MISO-NOMA transmission with artificial noise”, IEEE Trans. on Vehicular Technology, vol. 67, no. 7, pp. 6700–6705, July 2018 (doi: 10.1109/TVT.2018.2811733).
[26] G. He, L. Li, X. Li, W. Chen, L.L. Yang, Z. Han, “Secrecy sum rate maximization in NOMA systems with wireless information and power transfer”, Proceeding of the IEEE/WCSP, pp.1–6, Nanjing, China, Oct. 2017 (doi: 10.1109/WCSP.2017.8171177).
[27] Z. Xiang, W. Yang, Y. Cai, Y. Cheng, H. Wu, M. Wang, “Secrecy performance analysis of uplink NOMA in IoT networks”, Proceeding of the IEEE/ICIC, pp.506–510, Beijing, China, Aug. 2018 (doi: 10.1109/ICCChina.2018.8641217).
[28] H. Zhang, N. Yang, K. Long, M. Pan, G.K. Karagiannidis, V.C. Leung, “Secure communications in NOMA system: subcarrier assignment and power allocation”, IEEE Journal on Selected Areas in Communications, vol. 36, no. 7, pp. 1441–1452, July 2018 (doi: 10.1109/JSAC.2018.2825559).
[29] Y. Sun, D.W.K. Ng, J. Zhu, R. Schober, “Robust and secure resource allocation for full-duplex miso multicarrier NOMA systems”, IEEE Trans. on Communications, vol. 66, no. 9, pp. 4119–4137, Sept. 2018 (doi: 10.1109/TCOMM.2018.2830325).
[30] S. Han, X. Xu, X. Tao, P. Zhang, “Joint power and sub-channel allocation for secure transmission in Noma-based MMTC networks”, IEEE Systems Journal, vol. 13, no. 3, Sept. 2019 (doi: 10.1109/JSYST.2018.2890039).
[31] A. Jeffrey, D. Zwillinger, "Table of integrals, series, and products", 7th Edition 2007, ISBN 9780122947575.
_||_