A New Soft Switching High Step-Up Converter Ability to Increase Parallel Branches without the Need for a New Auxiliary Circuit
Subject Areas : Renewable energyIman Es-haghpour 1 , Majid Delshad 2 * , Saeid Javadi 3
1 - Department of Electrical Engineering- Kashan Branch, Islamic Azad University, Kashan, Iran
2 - Department of Electrical Engineering- Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
3 - Department of Electrical Engineering- Kashan Branch, Islamic Azad University, Kashan, Iran
Keywords: Zero-current switching, High Step-up Converter, cross-coupled inductors, zero-voltage switching, low-voltage stress,
Abstract :
In this paper, an interleaved high step-up converter with a simple auxiliary circuit is presented. The proposed auxiliary circuit has the coupled inductor with the input inductors of the converter and provides zero voltage switching conditions for the main switches of the converter. On the other hand, auxiliary switches and diodes of auxiliary circuit operate under zero current condition and therefore do not impose significant losses on the converter. The auxiliary circuit is modular and can apply to more phases of the converter. Therefore, the converter can be easily designed for very high power applications. The proposed converter uses the cross-coupled inductors technique with series lift capacitors to increase the voltage gain and reduce the voltage stress on the main switches. Also, leakage inductance energy can be easily absorbed by the clamp capacitors and helps to increasing the voltage gain. The proposed high step-up converter has been analyzed in detail and a practical prototype has been implemented at 100W. The experimental results confirm the correctness of the operation of the circuit and the theoretical analysis.
[1] B. Fani, M. Delshad, "Design and implementation of a new current fed converter with zero current switching conditions", Journal of Intelligent Procedures in Electrical Technology, vol. 1, no. 3, pp 11-18, Nov. 2010 (dor: 20.1001.1.23223871.1389.1.3.2.5).
[2] O. Sharifiyana, M. Dehghani, G. Shahgholian, S.M.M. Mirtalaei, M. Jabbari, "An overview of the structure and improvement of the main parameters of non-isolated dc/dc boost converters", Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 48, pp. 1-29, Mar. 2022 (dor: 20.1001.1.23223871.1400.12.48.6.6).
[3] M. Mirtalaee, R.A. Nafchi, “Boost high step-up dc/dc converter with coupled inductors and diode-capacitor technique”, Journal of Intelligent Procedures in Electrical Technology, vol. 10, no.39, pp. 3-12, Nov. 2019 (dor: 20.1001.1.23223871.1398.10.39.1.9).
[4] M. L. Alghaythi, R. M. O’Connell, N. E. Islam, M. M. S. Khan, J. M. Guerrero, "A high step-up interleaved DC-DC converter with voltage multiplier and coupled inductors for renewable energy systems," IEEE Access, vol. 8, pp. 123165-123174, 2020, (doi: 10.1109/ACCESS.2020.3007137).
[5] A. Amoorezaei, A. Abrishamifar, "An efficient interleaved high step-up converter with winding-cross-coupled inductor and common active clamp for photovoltaic applications", Proceeding of the IEEE/ICEE, pp. 1429-1434, Tehran, Iran , May 2017 (doi: 10.1109/IranianCEE.2017.7985267).
[6] T. Nouri, S.H. Hosseini, E. Babaei, J. Ebrahimi, “Interleaved high step-up dc–dc converter based on three-winding high-frequency coupled inductor and voltage multiplier cell”, IET Power Electron, vol. 8, no. 2, pp. 175-189, Feb. 2015 (doi: 10.1049/iet-pel.2014.0165).
[7] K.C. Tseng, J.Z. Chen, J.T. Lin, C.C. Huangand, T.H. Yen, “High step-up interleaved forward-flyback boost converter with three-winding coupled inductors”, IEEE Trans. on Power Electronics, vol. 30, no. 9, pp.4696-4703, Sept. 2015 (doi: 10.1109/TPEL.2014.2364292).
[8] S.M. Chen, T.J. Liang, L.S. Yang, J.F. Chen, "A cascaded high step-up dc-dc converter with single switch for microsource applications", IEEE Trans. on Power Electronics, vol. 26, no. 4, pp. 1146-1153, April. 2011 (doi: 10.1109/TPEL.2010.2090362).
[9] M. Forouzesh, Y. Shen, K. Yari, Y.P. Siwakoti, F. Blaabjerg, “High-efficiency high step-up DC-DC converter with dual coupled inductors for grid-connected photovoltaic systems”, IEEE Trans. on Power Electronics, vol. 33, no. 7, pp. 5967-5982, July. 2018 (doi: 10.1109/TPEL.2017.2746750).
[10] R. Beiranvand, S.H. Sangani, "A family of interleaved high step-up dc-dc converters by integrating a voltage multiplier and an active clamp circuits", IEEE Trans. on Power Electronics, vol. 37, no. 7, pp. 8001-8014, July 2022 (doi: 10.1109/TPEL.2022.3141941).
[11] S.M. Chen, T.J. Liang, L.S. Yang, J.F. Chen, “A boost converter with capacitor multiplier and coupled inductor for AC module applications”, IEEE Trans. on Indstrail Electronics, vol. 60, pp. 1503-1511, April 2013 (doi: 10.1109/TIE.2011.2169642).
[12] J.W. Baek, M.H. Ryoo, T.J. Kim, D.W. Yoo, J.S. Kim, “High boost converter using voltage multiplier”, Proceeding of the IEEE/IECON, pp. 567–572, Raleigh, NC, USA, Nov. 2005 (doi: 10.1109/IECON.2005.1568967).
[13] Y. Zheng, B. Brown, W. Xie, S. Li, K. Smedley, "High step-up DC–DC converter with zero voltage switching and low input current ripple", IEEE Trans. on Power Electronics, vol. 35, no. 9, pp. 9416-9429, 2020 (doi: 10.1109/TPEL.2020.2968613).
[14] P. Alavi, P. Mohseni, E. Babaei, V. Marzang, "An ultra-high step-up DC–DC converter with extendable voltage gain and soft-switching capability", IEEE Trans. on Indstrial Electronics, vol. 67, no. 11, pp. 9238-9250, Nov. 2020 (doi: 10.1109/TIE.2019.2952821).
[15] M. Meraj, M.S. Bhaskar, A. Iqbal, N. Al-Emadi, S. Rahman, "Interleaved multilevel boost converter with minimal voltage multiplier components for high-voltage step-up applications", IEEE Trans. on Power Electronics, vol. 35, no. 12, pp. 12816-12833, Dec. 2020 (doi: 10.1109/TPEL.2020.2992602).
[16] M.S. Bhaskar, D.J. Almakhles, S. Padmanaban, F. Blaabjerg, U. Subramaniam, D.M. Ionel, "Analysis and investigation of hybrid DC–DC non-isolated and non-inverting nx interleaved multilevel boost converter (Nx-IMBC) for high voltage step-up applications: hardware implementation", IEEE Access, vol. 8, pp. 87309-87328, 2020 (doi: 10.1109/ACCESS.2020.2992447).
_||_