Providing a novel approach for dynamic feeder reconfiguration considering importance of reliability and grid's security
Subject Areas : Renewable energyHossein Lotfi 1 , Reza Ghazi 2 * , Mohammad Bagher Naghibi Sistani 3
1 - Department of Electrical Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
2 - Department Electrical engineering, Ferdowsi University of Mashhad, Mashhad, Iran
3 - Department Electrical engineering, Ferdowsi University of Mashhad, Mashhad, Iran
Keywords: energy storage system, feeder reconfiguration, distributed generators, energy not supplied,
Abstract :
This paper presents, a novel evolutionary method for dynamic feeder reconfiguration at the presence of distributed generators (DGs), energy storage (ES) units and solar photovoltaic (PV) panels. Modern distribution networks, in addition to the importance of economic issues, must operate at an acceptable level of system reliability, Failure to pay attention to the reliability importance can lead to irreparable damages in the distribution network. Regarding the importance of the objective functions including voltage stability index (VSI), energy loss and energy not supplied (ENS) has led to the presentation of a stochastic multi-objective framework for dynamic feeder reconfiguration in the presence of distributed generators (DGs), energy storage (ES) units and solar photovoltaic (PV) panels considering uncertainty of PV units. A modified shuffled frog leaping algorithm is provided in this study to solve the proposed optimization problem. In order to show the efficiency and supremacy of the proposed method is applied on 33-node test system.
[1] A. Azizivahed, H. Narimani, E. Naderi, M. Fathi, M. R. Narimani, "A hybrid evolutionary algorithm for secure multi-objective distribution feeder reconfiguration", Energy, Vol. 138, pp. 355-373, Nov. 2017 (doi: 10.1016/j.energy.2017.07.102).
[2] D.S. Rani, N. Subrahmanyam, M. Sydulu, “Multi-objective invasive weed optimization–an application to optimal network reconfiguration in radial distribution systems”, International Journal of Electrical Power and Energy Systems, Vol. 37, pp. 932-942, Dec. 2015 (doi:10.1016/j.ijepes.2015.06.020).
[3] T. Niknam, "An efficient hybrid evolutionary algorithm based on PSO and ACO for distribution feeder reconfiguration", European Transactions on Electrical Power, Vol. 20, No. 5, pp. 575-590, July 2010 (doi:10.1002/etep.339).
[4] F. Alonso, D. Q. Oliveira, A. Z. Souza, "Artificial immune systems optimization approach for multiobjective distribution system reconfiguration", IEEE Trans. on Power Systems, Vol. 30, No. 2, pp. 840-847, March 2015 (doi: 10.1109/TPWRS.2014.2330628).
[5] V. Roberge, M. Tarbouchi, F. Okou, "New encoding based on the minimum spanning tree for distribution feeder reconfiguration using a genetic algorithm", Proceeding of the IEEE/ICEIT, Tangiers, Morocco May 2016 (doi: 10.1109/EITech.2016.7519574).
[6] A. Roosta, H.-R. Eskandari, M.-H. Khooban, "Optimization of radial unbalanced distribution networks in the presence of distribution generation units by network reconfiguration using harmony search algorithm", Neural Computing and Applications, Vol. 31, No. 11, pp. 7095-7109, 2019 (doi: 10.1007/s00521-018-3507-0).
[7] A. Parizad, H. R. Baghaee, A. Yazdani, G. B. Gharehpetian, "Optimal distribution systems reconfiguration for short circuit level reduction using PSO algorithm", Proceeding of the IEEE/PECI, Feb. 2018, Champaign, IL, USA (doi:10.1109/PECI.2018.8334976).
[8] A. S. Reddy, M. D. Reddy, Y. K. Reddy, "Feeder reconfiguration of distribution systems for loss reduction and emissions reduction using MVO algorithm", Majlesi Journal of Electrical Engineering, Vol. 12, No. 2, pp. 1-8, 2018.
[9] A. Landeros, S. Koziel, M. F. Abdel-Fattah, "Distribution network reconfiguration using feasibility-preserving evolutionary optimization", Journal of Modern Power Systems and Clean Energy, Vol. 7, No. 3, pp. 589-598, 2019 (doi:10.1007/s40565-018-0480-7).
[10] R. Pegado, Z. Ñaupari, Y. Molina, C. Castillo, "Radial distribution network reconfiguration for power losses reduction based on improved selective BPSO", Electric Power Systems Research,Vol. 169, pp. 206-213, April 2019 (doi:10.1016/j.epsr.2018.12.030).
[11] A. Azizivahed, E. Naderi, H. Narimani, M. Fathi, M. R. Narimani, "A new bi-objective approach to energy management in distribution networks with energy storage systems”. IEEE Transactions on Sustainable Energy, Vol. 9, No. 1, pp. 65-64, Jan. 2018 (doi:10.1109/TSTE.2017.2714644).
[12] A. Azizivahed, H. Narimani, M. Fathi, E. Naderi, H. R. Safarpour M. R. Narimani, "Multi-objective dynamic distribution feeder reconfiguration in automated distribution systems", Energy, Vol. 147, pp. 896-914, March 2018 (doi:10.1016/j.energy.2018.01.111).
[13] E. Mahboubi-Moghaddam, M. R. Narimani, M. H. Khooban, A. Azizivahed, M. J. sharifi, "Multi-objective distribution feeder reconfiguration to improve transient stability, and minimize power loss and operation cost using an enhanced evolutionary algorithm at the presence of distributed generations", International Journal of Electrical Power and Energy Systems, Vol. pp. 35-43, March 2016 (doi: /10.1016/j.ijepes. 2015.09.007).
[14] H. Lotfi, R. Ghazi, M. B. Naghibi-Sistani, "Multi-objective dynamic distribution feeder reconfiguration along with capacitor allocation using a new hybrid evolutionary algorithm", Energy Systems, pp. 1-31, 2019 (doi: 10.1007/s12667-019-00333-3).
[15] A. Ameli, A. Ahmadifar, M. H. Shariatkhah, M. Vakilian, M. R. Haghifam, "A dynamic method for feeder reconfiguration and capacitor switching in smart distribution systems”, International Journal of Electrical Power & Energy Systems, Vol. 85, pp. 200-211, Feb. 2017 (doi: 10.1016/j.ijepes.2016.09.008).
[16] A. Azizivahed, A., et al. "Dynamic feeder reconfiguration in automated distribution network integrated with renewable energy sources with respect to the economic aspect", Proceeding of the IEEE/ISGT, Chengdu, China, China , May 2019 (doi: 10.1109/ ISGT-Asia.2019.8881503)
[17] M. Eusuff, K. Lansey, F. Pasha, "Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimizatio", Engineering Optimization, Vol. 38, No. 2, pp. 129-154, Jan. 2007 (doi:10.1080/03052150500384759).
[18] M. Chakravorty, D. Das, "Voltage stability analysis of radial distribution networks", International Journal of Electrical Power and Energy Systems, Vol. 23, No. 2, pp. 29-135, Feb. 2001 (doi:10.1016/S0142-0615(00)00040-5).
[19] T. Niknam, A. Kavousifard, J. Aghaei, "Scenario-based multiobjective distribution feeder reconfiguration considering wind power using adaptive modified particle swarm optimisation", IET Renewable Power Generation, Vol. 6, No. 4, pp. 236-247, July 2012 (doi:10.1049/iet-rpg.2011.0256).
[20] M. E. Baran, F. F. Wu, "Network reconfiguration in distribution systems for loss reduction and load balancing", IEEE Trans. on Power delivery, Vol. 4, No. 2, pp. 1401-1407, April 1989 (doi:10.1109/61. 25627).
[21] J. Kennedy, R. Eberhart, "Particle swarm optimization", Proceeding of the IEEE/ICNN, Perth, WA, Australia, Australia, Dec. 1995 (doi:10.1109/ICNN.1995. 488968).
_||_