The effect of investment horizon on optimum portfolio rebalancing frequency in portfolios of stocks listed on Tehran Stock Exchange with short-selling
Subject Areas : Journal of Investment KnowledgeAlireza Validi 1 , javad validi 2
1 - M.A Financial Engineering, Kharazmi University, Tehran, Iran
(Corresponding Author)
2 - M.A Financial Engineering, K.N.Toosi University of Technology, Tehran, Iran
Keywords: Portfolio Rebalancing, log-optimal strategy, optimum rebalancing function, semi-active strategy,
Abstract :
In active portfolio rebalancing strategy so called log-optimal portfolio rebalancing strategy, rebalancing is executed continuously so that utility function achieves to its maximum value. But the implementation of this strategy is impossible for its high transaction costs. In this article, we introduce another strategy to get utility of active strategy at least by using active strategy parameters. on the other hand, choosing the optimum rebalancing frequency depends on the investment horizon. Choosing the best rebalancing frequency among the all possible ones for each given investment horizon is the main purpose of this article. So we first introduce different rebalancing strategies and then semi-active one to obtain the optimum frequency as a function of investment horizon. Implementation of this model is based on neglecting the short-selling constraint in Iran stock market. Implementation results on a real portfolio in Tehran stock exchange showed that choosing the optimum frequency is more sensitive for short horizons. And also using this frequency in semi-active strategy will increase the value of utility function in comparison to active strategy.
* زندیه، مصطفی. امیری، مقصود و ربانی، معصومه (1392). «تأثیر متوازنسازی مجدد مدل چند دورهای پرتفوی سرمایهگذاری، بر روی بازدهی پرتفوی، با استفاده از الگوریتم فرا ابتکاری»، پایاننامه کارشناسی ارشد، موسسه آموزش عالی غیرانتفاعی و غیردولتی رجاء قزوین.
* فدایی نژاد، محمد اسماعیل و بنائیان، حمید (1389). «طراحی مدل متوازنسازی مجدد پرتفوی سرمایهگذاری با در نظر گرفتن هزینههای معاملاتی بر مبنای رویکرد تصمیمگیری فازی»، هشتمین کنفرانس بینالمللی مدیریت، گروه پژوهشی آریانا.
* Algoet, P. Cover, T. (1988). "Asymptotic optimality and asymptotic equipartition properties of log-optimum investment". The Annals of Probability
* Arguin, L.P. Bovier, A. Kistler, N. (2013). “The extremal process of branching Brownian motion”, Probability Theory and Related Fields, 535–574
* Das, S. Goyal, M. (2012). "Discrete-Time Log-Optimal Portfolio Rebalancing: A Scalable Efficient Algorithm". IEEE Computational Intelligence for Financial Engineering and Economics
* Das, S. (2014). "Scalable, Efficient and Optimal Discrete-Time Rebalancing Algorithms for Log-Optimal Investment Portfolio". Theses and Dissertations. Paper 455.
* Fenton, L. (1960). "The sum of log-normal probability distributions in scatter transmission systems". Communications Systems, IRE Transactions on 8 (1)
* Ha, Y. (2017). “Review of online portfolio selection: Performance comparison with transaction costs including market impact costs”. Ha, Youngmin, Review of Online Portfolio Selection: Performance Comparison with Transaction Costs Including Market Impact Costs. Available at: SSRN: https://ssrn.com/abstract=2763202
* Hull, J. (2011). "Options, Futures, and Other Derivatives". Prentice Hall, New Jersey
* Jung, J. Kim, S. (2016). “Developing a dynamic portfolio selection model with a self-adjusted rebalancing method”, Journal of the Operational Research Society, 1-14
* Kaznachey, D. Das, S. Goyal, M. (2012). “Computing Optimal Rebalance Frequency for Log-Optimal Portfolio", journal of Quantitative Finance
* Kritzman, S. Page, S. (2009). "Optimal rebalancing: a scalable solution". Journal of Investment Management 7 (1)
* Kohler, A. Wittig, H. (2014). "Rethinking Portfolio Rebalancing: Introducing Risk Contribution Rebalancing as an Alternative Approach to Traditional Value-Based Rebalancing Strategies”, The Journal of Portfolio Management. 34-46
* Liu, J. Longstaff, F. Pan, J. (2003). "Dynamic asset allocation with event risk". Journal of Finance
* Luenberger, D. (1998). "Investment science". Oxford Univ. Press, New York
* Mittal, G. Mehlawat, M.K. (2014). “A multiobjective portfolio rebalancing model incorporating transaction costs based on incremental discounts”, Optimization: A Journal of Mathematical Programming and Operations Research, 1595-1613
* Merton, R. (1971). "Optimum consumption and portfolio rules in a continuous-time model". Journal of Economic Theory 3 (4)
* Moallemi, C.C. Sa˘glam, M. (2015). “Dynamic Portfolio Choice with Linear Rebalancing Rules”. Available at SSRN: https://ssrn.com/abstract=2011605
* Neftci, S. (2000). "An Introduction to the Mathematics of Financial Derivatives". Advanced Finance, Academic Press, London
* Sun, W. Fan, A. Chen, L. Schouwenaars, T. Albota, M. (2006). "Using dynamic programming to optimally rebalance portfolios". The Journal of Trading 1 (2)
_||_