Installment Option Valuation by Least Squares with Checking the Solution Convergence
Subject Areas : Journal of Investment KnowledgeHamed Hamedinia 1 * , Mahdi Rezyati 2
1 - Ph.D. student, university of Tehran, Tehran, Iran
2 - Ph.D. student, university of Isfahan
Keywords: Exotic Option, Installment Option, Least Square, Monte Carlo simulation,
Abstract :
An installment option is a European option in which the holder pays the option as a series of payments instead of paying all up-front. If all payments pay, the holder will be able to exercise the option at maturity time. However, the installment option will be terminated even if one installment is not paid. This study is divided into two sections. First, the importance of installment option is studied; the relationship between installment option and Venture Capital is explained; and it is studied how BLS model is failed to evaluate the installment option. As the exact evaluation of installment option is extremely complicated and usually intractable, Monte Carlo simulation and Least Squares (LS) have been applied to evaluate installment option. Second, the three optimum values, function type, number of base variables and number of simulated path, as important factors on this method are calculated. So, numerical valuation converges to exact solution.
* احمدی، زهرا (1390)، قیمتگذاری ابزارهای مشتقه به کمک روش مونتکارلو- کمترین مربعات. پایاننامه کارشناسی ارشد، زنجان: دانشگاه علوم پایه زنجان
* باقری، کامران و محبوبی، جواد (1383)، سرمایهگذاری خطرپذیر. تهران: بنیاد توسعه فردا
* حامدی نیا، حامد (1393)، ارزشگذاری صندوق سرمایهگذاری خطرپذیر با استفاده از اختیار معامله قسطی، پایاننامه کارشناسی ارشد، تهران، دانشگاه علوم اقتصادی
* رستمی، محمد و صیقلی، محسن (1391)، پاداش ریسک. تهران: انتشارات بورس
* فروشباستانی، علی و حامدینیا، حامد (1394)، ارزشگذاری طرحهای خطرپذیر با استفاده از اختیارات طبیعی و اختیار معامله قسطی، مجله دانش سرمایهگذاری، تهران، ایران
* Barola, A. (2013). Monte Carlo Methods for American Option Pricing. Working Paper, Copenhagen Business School.
* Broadie, M. and Glasserman, P. (1997). Pricing American-style securities by simulation. J. Econom. Dynam. Control 21 1323–1352.
* Broadie, M. and Glasserman, P. (1997). A stochastic mesh method for pricing high-dimensional American options. PaineWebber Series in Money, Economics and Finance. #PW9804, Columbia Business School, Columbia Univ
* Ciurlia, P. & Roko, I. (2005). Valuation of American Continuous-Installment Options. Computational Economics 1-2, 143-165.
* Cl´ ement, E., Lamberton, D. and Protter, P. (2002). An analysis of a least squares regression algorithm for American option pricing. Finance Stoch. 6 449– 471.
* Cortazar, G. (2002). Simulation and Numerical Methods in Real Options Valuation, Working Paper, Pontificia Universidad Católica de Chile.
* Geske, R. (1979). The Valuation of Compound Options. Journal of Financial Economics. Volume 7, Number 1 (March), pp. 63-81.
* Glasserman, P. & Yu, L. (2004). Number of paths versus number of basis functions in American option pricing, The annals of applied probability, New York, pp.2090-2119
* Griebsch, S & Wystup, U. (2007). Instalment Options: A Closed-Form Solution and the Limiting Case. Mathematical Control Theory and Finance, Springer-Verlag, Berlin, pp. 211–229.
* Longstaff, F. & Schwartz, E. (2001). Valuing American Options by Simulation: A Simple Least-Squares Approach. Society for Financial Studies, Vol. IS. No. I, pp. 113-147.
* Rogers, L. C. G. (2002). Monte Carlo valuation of American options. Math. Finance
12 271–286.
* Tsitsiklis, J. and Van Roy, B. (1999). Optimal stopping of Markov processes: Hilbert space theory, approximation algorithms, and an application to pricing high-dimensional financial derivatives. IEEE Trans. Automat. Control 44 1840–1851.
* Wystup, U. (2006). FX Options and Structured Products. Wiley Finance.
_||_