Selection of optimal portfolio by using improved Non-Dominated Sorting Genetic Algorithm and Evolutionary Algorithm Strength Pareto By taking risk on the basis of conditional value at risk
Subject Areas : Journal of Investment KnowledgeMojtaba Moradi 1 , Maryam Ghavidel 2
1 - Assistant Professor, University of Guilan
(Corresponding Author)
2 - MSc in Financial Mathematics
Keywords: Non-Dominated Sorting improved, Evolutionary Algorithm Strengt, portfolio optimization, Conditional Value at Risk (CVa,
Abstract :
Portfolio selection problem is one of the most important economic issues. The right combination of stock or other asset portfolio is that an investor pays to buy it. Selection of an optimal portfolio is based on the principle that the investor decides to accept one or several investments among different investment depending on the tolerance of risk and expected a reasonable amount of stock returns. In this study, improved Non-Dominated Sorting multi-objective genetic algorithms and Evolutionary Algorithm Strength Pareto are used to create an optimum portfolio. These algorithms are improved version of their previous versions and have a better solution than its previous versions. The value of the portfolio and its risk, as optimization purposes and conditional value at risk as the basis risk, have been used. Two applied conditions consider to Portfolio and shown that the Evolutionary Algorithm Strength Pareto has better results than the Non-Dominated Sorting Genetic Algorithm II.
* اسلامی بیدگلی، غلامرضا و احسان طیبی ثانی، (1393). بهینهسازی سبد سرمایهگذاری بر اساس ارزش در معرض ریسک، فصلنامه علمی پژوهشی دانش سرمایهگذاری، شماره 10.
* عباسی، ابراهیم؛ ابوالی، مهدی؛ سربازی، مهدی (1391)."انتخاب سبد سهام بهینه با استفاده از الگوریتم ژنتیک NSGA-II"، مجله مهندسی مالی و مدیریت اوراق بهادار، شماره 10.
* مروتی شریفآبادی، علی؛ عزیزی، شیرین؛ احمدی، نسترن (1394). بکارگیری الگوریتم رقابت استعماری (ICA) در بهینهسازی و تشکیل پرتفلیو، فصلنامه دانش سرمایهگذاری، شماره 13.
* Conejo A.J., Carrión M., Morales J.M. (2010). Decision Making Under Uncertainty in Electricity Markets. Series: International Series in Operations Research & Management Science, Vol. 153.
* Cura, T., (2009). Particle swarm optimization approach to portfolio optimization, Nonlinear Analysis: Real World Applications 10(4), 2396–2406.
* Deb K., Agarwal S., Meyarivan T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation; 6: 2 (2002) 182-197.
* Elton, E.J. Gruber, M.J. (1995), "Modern Portfolio Theory and Investment Analysis", John Wiley and Sons, New York.
* Konno H., Yamazaki H., (1991). Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Management Science; 37519–31.
* Jorion, P. (2006). Value at Risk: The New Benchmark for Managing Financial Risk, 3rd Edition, New York: McGrawHill.
* Larsen, N., Mausser, H., & Uryasev, S. (2002). Algorithms for optimization of value-at-risk. In P. M. Pardalos & V. K. Tsitsiringos (Eds.), Financial engineering, E-commerce and supply chain, volume 70 of Applied optimization (Vol. 70, pp. 19–46). New York: Springer.
* Lazo J.G.L., Vellasco M.M.R., Pacheco M.A.C. (2000). A hybrid genetic-neural system for portfolio selection and management. In: 6th Int. Conference on Engineering Applications of Neural Networks, 17-19.
* Markowitz, H. (1952). Portfolio selection. Journal of Finance 7: 77–91
* Sarykalin, S., Serraino, G., & Uryasev, S., (2008). Value-at-risk vs. conditional value-at-risk in risk management and optimization. In Z. L. Chen & S. Raghavan (Eds.), Tutorials in Operations Research, 270–294
* Tuba, M.; Bacanin, N. (2014). Artificial bee colony algorithm hybridized with firefly algorithm for cardinality constrained mean-variance portfolio selection problem. Appl. Math. Inf. Sci. 8 no. 6, 2831–2844.
* Yin Peng-Yeng, Jing-Yu Wang (2006). A particle swarm optimization approach to the nonlinear resource allocation problem. Applied Mathematics and Computation, 183, 232–242
* Zitzler E., Laumanns M. and Thiele L. (2001). “SPEA2: Improving the Performance of the Strength Pareto Evolutionary Algorithm”, Technical Report 103, Computer Engineering and Communication Networks Lab (TIK), Swiss Federal Institute of Technology (ETH) Zurich 2001
_||_