Predicting Network linkages of banking system distress based on operational risks and behavioral finance components
Subject Areas : Journal of Investment Knowledgeahmad bidi 1 , Fraydoon Rahnamay Roodposhti 2 * , Gholam Reza Gholami Jamkarani 3 , HAMIDREZA KORDLOUIE 4 , Mortaza Baky Hasuee 5
1 - PhD. Student in Financial Management, Qom Branch, Islamic Azad University, Tehran, Iran
2 - Professor of Accounting Department, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 - Accounting and finance Department, Qom Branch, Islamic Azad University, Qom, Iran
4 - Associate Professor of Accounting and management Department, Ealamshar Branch, Islamic Azad University, Ealamshar, Iran
5 - Assistant Professor, Economic and Head of Office Economic Modeling, Imam Sadegh University, Tehran, Iran
Keywords: Operational risks, Network linkages, Behavioral Finance Approach, Banking system, Distress Prediction,
Abstract :
The present research is aimed at prediction of network linkages of banking system distress based on operational risks and behavioral finance approach. Methodology of the present research is of survey descriptive, practical from the purpose standpoint. Notably, in order to reach this purpose, firstly, based on study and review of theoretical basics, research variables were introduced. Then, by making use of Krejcie and Morgan Table, 384 participants were selected, and upon distribution of questionnaire among the aforesaid, research data were collected. Furthermore, in order for analysis of data and estimation of research empirical models, the researcher used structural equation modeling (SEM) and Smart PLS software. Of note, findings of this research indicate that behavioral financial standpoints and operational risk have significant effects on prediction of banking network disorder. Furthermore, based on estimated beta coefficients, among behavioral financial elements, economic behavior, cognitive standpoint, judgment biases, heuristic behaviors, decision making biases and value and return of stocks have respectively the highest effect on banking disorder, and among operational risk elements, human resources risk, systemic risk, transaction risk, technology risk and fraudulent and deception risk have respectively the highest effect on banking disorder.
احمدیان، اعظم، گرجی، مهسا. (1396). تبیین مدل ورشکستی جهت شناسایی بانکهای سالم و در معرض خطر. مدیریت دارایی و تأمین مالی، 5(3)،1-18.
اُستادهاشمی، علی.، صادقی شریف، سیدجلال.، سوری، علی. (1397). مدلسازی ریسک سیستمی نظام بانکی و شوکهای متغیرهای کلان اقتصادی. رساله دکتری رشته مدیریت گرایش مالی، دانشگاه شهید بهشتی، دانشکده مدیریت و حسابداری، گروه مدیریت مالی، اسفندماه 1397، تهران، ایران.
آقایی، مجید، رضاقلیزاده، مهدیه. (1395). بررسی عوامل مؤثر بر حجم مطالبات معوق و سررسید شده شعب منتخب بانک سپه. فصلنامه مطالعات مالی و بانکداری اسلامی، 2(بهار و تابستان)، 95-111.
فلاح پور، سعید و غلام رضا عبداللهی. (1390). شناسایی و وزن دهی تورشهای رفتاری سرمایه گذاران در بازار بورس اوراق بهادار تهران: رویکرد((AHP فازی، دوفصلنامه تحقیقات مالی، دوره ی13، شماره31،صص:120-99.
کلانتری، خلیل(1388)، مدلسازی معادلات ساختاری در تحقیقات اجتماعی- اقتصادی، تهران: انتشارات فرهنگ صبا
مشیری، سعید، نادعلی، محمد. (1392). شناسایی عوامل مؤثر در بروز بحران بانکی در اقتصاد ایران. پژوهشنامه اقتصادی، 13(48)، 1-27.
مشیری، سعید، نادعلی، محمد.، (1389). شناسایی بحرانهای بانکی در اقتصاد ایران. مجله نامه مفید، ۶(۱۶): 59-88.
نوروزی، پیام (1393). تأثیر متغیرهای کلان بر ریسک اعتباری بانکها در ایران، فصلنامه پژوهشهای پولی- بانکی سال هفتم، شماره ۲۰.
نیکومرام، هاشم، پورزمانی، زهرا، دهقان، عبدالمجید. (1392). سرایتپذیری تلاطم در بازار سرمایه ایران. دانش سرمایهگذاری، 3(11)، 179-200.
هومن، حیدر علی(1390). مدل یابی معادلات ساختاری با کاربرد نرم افزار لیزرل، چاپ چهارم، تهران، انتشارات سمت.
Alejandro,G., & Christian .A.j,. (2002). A review of the literature on early warning systems for banking crises. Working Papers Central Bank of Chile with number183.
Beltratti, A. and R. Stulz (2012). The credit crisis around the globe: Why did some banksperform better? Journal of Financial Economics 105, 1{17}.
Borio, C., Furfine, C., & Lowe, P. (2001). Procyclicality of the financial system and financial stability: Issues and policy options. BIS papers, 1: 1-57.
Byrne, B. M. (1994). Structural equation modeling with EQS and EQS/Windows: Basic concepts, applications, and programming. Sage.
Caprio, G., & Klingebiel, D. (1996). Bank insolvencies: cross-country experience. World Bank policy research working paper, (1620).
Caprio, G., & M Soledad Martinez-Peria.(2000). Avoiding disaster: Policies to Reduce the Risk of Banking Crises, Discussion Paper, Cairo, Egypt: Egyptian Center for Economic Studies.
Chin, W.W. (1998). The Partial Least Squares Approach to Structural Equation Modeling. In ModernMethods for Business Research, Marcoulides, G.A. (ed.), Lawrence Erlbaum Associates, Mahwah, NJ, pp:1295-1336.
Constantin, Andreea, Peltonen, Tuomas A., Sarlin, Peter.,(2016). Network linkages to predict bank distress. Journal of Financial Stability, Volume 35, April 2018, PP: 226-241.
Dhaoui, A., & Khraief, N. (2014). Sensitivity of trading intensity to optimistic and pessimistic beliefs. Arab Economic and Business Journal, 9, 115-132.
Fornell, C.,& Cha, J. (1994). “Partial least squares”, in Bagozzi, R.P. (Ed.), Advanced Methods of Marketing Research, Blackwell, Cambridge, MA, pp. 52-78.
Fornell, C.,&Lacker, D.F. (1981). Evaluation structural equation models with unobserved variables and measurement error. Journal of Marketing Research, 18(1), 39-50.
Fund.Diamond, D. W., & Dybvig, P. H. (1983). Bank runs, deposit insurance, and liquidity. The journal of political economy: 401-419.
Herring, R. J., & Wachter, S. M. (1998). Real Estate Cycles and Banking Crises: An International Perspective (No. 298). Wharton School Samuel Zell and Robert Lurie Real Estate Center, University of Pennsylvania
Hörstedt, Maria., Linjamaa, Johanna., Lions, Catherine., (2015). Credit Risk Evaluation of Swedish SMEs: A Banking Sector Perspective.Umeå School of Business and Economics, Spring Semester 2015, Degree Project 30 ects.
Joseph F Hair,Jr, G.Tomas M.Hult, Christian M.ringle and Marko Sarstedt (2016). A Primer on Partial Least Square Structural Equation Modeling (PLS-SEM), Second edition.
Jurevičienė, D.,& Ivanova, O.(2013). BEHAVIOURAL FINANCE: THEORY AND SURVEY. ISSN 2029-2341 print / ISSN 2029-2252 online ,5 (1), 53-58.
Kahneman, D and Reipe, M, ( 2004), "Aspects of investor psychology", journal of portfolio management, 52-64.
Ringle, C.M., Wende, S., &Will, A. (2005). Smart PLS Version 2.0 M3, University of Hamburg.
Santos, J. A. (2001). Bank capital regulation in contemporary banking theory: A review of the literature. Financial Markets, Institutions & Instruments, 10(2), 41-84.
Tanaka,J.S.,& Huba,G.J.(1984).Confirmatory hierarchical factor analyses of psychological distress measures.Journal of personality and social psychology,46:621-635
Tversky, A. & Kahneman, D. (1979). Judgment under uncertainty: heuristics and biases. Science, 185,1124–1131.
Wong, J., &Wong, T. C., & Leung, P. (2010). Predicting banking distress in the EMEAP economies. Journal of Financial Stability, 6(3): 169-179.
_||_