Monte Carlo Markov chain simulation under Bayesian inference to identify the parameters affecting earning quality measurement
Subject Areas :
Journal of Investment Knowledge
Hamid Farhadi
1
,
Fazel Mohammadi Nodeh
2
*
,
Seyed Reza Seyed Nejad Fahim
3
1 - Department of Accounting, Qazvin Branch, Islamic Azad University, Qazvin, Iran
2 - Assistant Professor, Department of Management, Lahijan Branch, Islamic Azad University, Lahijan, Iran
3 - Department of Accounting, Lahijan Branch, Islamic Azad University, Lahijan, Iran
Received: 2023-06-07
Accepted : 2023-07-16
Published : 2024-12-21
Keywords:
posterior distribution,
Bayesian inference,
Earning Quality,
Uncertainty quantification,
Markov chain Monte Carlo (MCMC),
Abstract :
The purpose of this research is Monte Carlo Markov chain simulation under Bayesian inference to identify the parameters affecting earning quality measurement. In this regard, in order to predict the earning behavior of companies and to derive the exact parameters of the model from the Bayesian Markov Monte Carlo (MCMC) technique, which takes cross-sectional heterogeneity into account, an analysis was done by coding in Python. In this research, the earning signals extracted from the financial statements on a quarterly basis for a period of 5 years (2018-2022), for 104 companies admitted to the Tehran Stock Exchange, were collected and analyzed using a new measure of earning quality. Auxiliary variables of accounting comparability, financial leverage, operating cycle, and sales volatility were used to achieve more accurate results, and several statistical performance measures (R2, RMSE, and MSE) were used to evaluate the effectiveness of Bayesian-based forecasting models. The results showed that the proposed criterion of the present study derived from the Bayesian model for training and testing data is well able to predict the quality of earning. The evidence shows that the results of the proposed model are superior to the conventional accrual earning management model, which suggests an error rate of MSE=0.0188 and RMSE=0.1369, respectively. The results of the present research can be used to analyze the portfolio and predict the quality of future earnings of companies using historical data. It can also be used to study factors affecting investment performance.
References:
اعتمادی، حسین، مومنی، منصور و فرج زاده دهکردی، حسن (1391)، مدیریت سود چگونه کیفیت سود شرکت ها را تحت تاثیر قرار می دهد، مجله پژوهش های حسابداری مالی، 4(2)، 101-122.
انصاری نسب مسلم، محمدی، زهرا (1398)، بررسی رفتار غیر خطی نرخ ارز در ایران: شواهدی از الگوی مارکوف سوییچینگ، بررسی مسائل اقتصاد ایران (اقتصاد تطبیقی سابق)، سال ششم، شماره 1 (پیاپی 11)
حاجی ها، زهره، قصاب ماهر، لیلا (1390)، ارزش نامشهود ایجاد شده توسط واحد تجاری در شرکت های هموارساز و غیرهموارساز سود، پژوهشنامه حسابداری مالی و حسابرسی، 3 (12)، 136-113.
حسینی، سید رسول، حاجیان نژاد، امین (1400)، الگوسازی پایداری و برگشت پذیری سود حسابداری با استفاده از زنجیره های مارکوف، مجله دانش حسابداری، دانشگاه شهید باهنر کرمان، دوره 12، شماره 2.
رسولخانی، باقر، بزرگ اصل، موسی (1398)، تاثیر کیفیت سود شرکت های مرتبط اقتصادی بر ریسک بازار، پژوهش های کاربردی در گزارشگری مالی، دوره هشتم، شماره 15
رفاعی، رامیار، سامتی، مرتضی، قبادی، سارا (1398)، شبیه سازی تاثیر عوامل موثر بر رکود اقتصادی در ایران: مقایسه دو رهیافت زنجیره مارکوف مونت کارلو و بیزین، پژوهش های رشد و توسعه اقتصادی، شماره 36
رفاعی، رامیار، سامتی، مرتضی، قبادی، سارا (1398)، شناسایی عوامل موثر بر رکورد اقتصادی در ایران: شبیه سازی مونت کارلو و الگوریتم متروپلیس هاستینگس، نظریه های کاربردی اقتصاد، سال ششم، شماره 3
شهریاری، سعید، ایمان زاده، پیمان و خوشنود، مهدی. (1401). مدلسازی نوسانات نهفته شاخص بورس اوراق بهادار با استفاده از الگوی کاپولا-نوسان تصادفی. مهندسی مالی و مدیریت اوراق بهادار، انتشار آنلاین
Ball, R., & Shivakumar, L. (2005). Earnings quality in UK private firms: comparative loss recognition timeliness. Journal of Accounting and Economics, 39, 83-128.
Chen and J.J. Gong (2019), Accounting comparability, financial reporting quality, and the pricing of accruals, Advances in Accounting,https://doi.org/10.1016/j.adiac.2019.03.003
De Franco, G., Kothari, S.P. & Verdi, R.S. (2011). The Benefits of Financial Statement Comparability. Journal of Accounting Research, 49 (4): 895-931.
Dichow, P., & Dichev, I. (2002). The quality of accruals and earnings: the role of accrual estimation errors. The Accounting Review, 77.
Du, K., Huddart, S., Xue, L., & Zhang, Y. (2020). Using a hidden Markov model to measure earnings quality. In Journal of Accounting and Economics (Vol. 69, Issues 2–3, p. 101281). Elsevier BV. https://doi.org/10.1016/j.jacceco.2019.101281
Du, K., Huddart, S., Xue, L., Zhang, Y. (2020). Using a hidden Markov model to measure earnings quality. Journal of Accounting and Economics, 69(2-3), 1-55.
Fonou-Dombeu, N. C., Mbonigaba, J., Olarewaju, O. M., & Nomlala, B. C. (2022). Earnings quality measures and stock return volatility in South Africa. In Future Business Journal (Vol. 8, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s43093-022-00115-x
Francis, J., Lafond, R., Olsson, P., & Schipper, K. (2004). Costs of equity and earnings attributes. The Accounting Review, 79(4), 967-1010.
Hribar, P., Kravet, T., Wilson, R., 2014. A new measure of accounting quality. Review of Accounting Studies 19, 506–538.
Leuz, C., Nanda, D., & Wysocki, P. (2003). Earnings management and investor protection: An international comparison. Journal of financial Economics, 69, 505-527.
Lipe, R. (1990). The relation between stock returns and accounting earnings given alternative information. The accounting review, 49-71.
McNichols, M. (2002). Discussion of the quality of accruals and earnings: The role of accrual estimation errors. The Accounting Review, 77, 61-69.
Menicucci, Elisa (2020), Earnings Quality, Palgrave Pivot- Cham publisher, https://doi.org/10.1007/978-3-030-36798-5
Nikolaev, V., 2017. Identifying accounting quality. Working Paper, University of Chicago.
Persakis, A., Iatridis, G.E. (2015). Earnings quality under financial crisis: A global empirical investigation. Journal of Multinational Financial Management, 30, 1–35.
Schipper, K., & Vincent, L. (2003). Earnings quality, Accounting Horizons. 17 (supplement), 97-110.
Scott, S. (2002). Bayesian methods for hidden Markov models: Recursive computing in the 21st century. Journal of the American Statistical Association, 97, 337-351.
Takaishi T. (2009) An Adaptive Markov Chain Monte Carlo Method for GARCH Model. In: Zhou J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02469-6_22.
Tham, A. W., Kakamu, K., & Liu, S. (2023). Bayesian Statistics for Loan Default. In Journal of Risk and Financial Management (Vol. 16, Issue 3, p. 203). MDPI AG. https://doi.org/10.3390/jrfm16030203
Zakaria, F., & Benbachir, A. (2022). Modeling the stochastic volatility of MAD/EURO and MAD/USD the exchange rates by the Bayesian approach and the MCMC (Monte Carlo Markov Chain) algorithm. In Journal of Modelling in Management. Emerald. https://doi.org/10.1108/jm2-04-2021-0099
_||_