Prioritization of stock price bubble measuring factors with a behavioral approach
Subject Areas :
Journal of Investment Knowledge
ALI RAMEZANI
1
,
Fraydoon Rahnamay Roodposhti
2
,
HAMIDREZA KORDLOUIE
3
,
SHADI Shahverdiani
4
1 - Ph.D. Candidate, Department of Financial Management, Faculty of Management and Economics, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 - Full Professor, Department of Business Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.
3 - Professor and faculty member of Islamic Azad University –Eslamshahr Branch, Department of Financial Management, Tehran, Iran.
4 - Assistant Professor, Department of Business Management, Shahre Qods Branch, Islamic Azad University, Tehran, Iran.
Received: 2021-12-29
Accepted : 2022-01-12
Published : 2023-06-22
Keywords:
Behavioral Approach,
Mass Behavior,
Speculation Behavior,
Price Bubble,
Investor Heterogeneity,
Abstract :
Behavioral bubble models generally assume that real investors,as uninformed and irrational individuals, follow the trend and cause bubbles to form,while legal investors,as informed,adopt a reverse behavioral strategy. They go against the trend. Therefore,the main purpose of this study was to prioritize the factors of measuring the stock price bubble with a behavioral approach. The method of the present study is descriptive survey and the statistical population consists of 10 capital market experts. ANP was used to prioritize the identified behavioral factors. The threshold value must be calculated to map the network relationships. In this study,a threshold value of0.059 was obtained.to normalize the preferences of each criterion,the sum of the values of that criterion must be divided by the sum of all preferences. Because the values are fuzzy,the fuzzy sum of each row is multiplied by the inverse of the sum. The inverse sum must be calculated.Each of the obtained values of fuzzy and normalized weight corresponds to the main criteria.In the final step of de-fuzzing, the values obtained and the crisp number are calculated.The incompatibility rate of the comparisons is0.026 ,which is less than0.1 ,and therefore the comparisons can be trusted.Calculations performed to determine the priority of the main criteria showed that heterogeneity of investors with a normal weight of0.128 has the highest priority.Speculative behavior with a normal weight of0.107 is in the second priority.Mass behavior with a normal weight of 0.1067 Is in the third priority and mental accounting with a normal weight of0.092 is in the last priority.
References:
ابراهیمی سروعلیا، محمدحسن؛ فلاح شمس لیالستانی، میرفیض؛ آذرنگ، شهناز.(1392).بررسی عوامل تاثیر گذار برحباب قیمت در بورس اوراق بهادر تهران،مهندسی مالی و مدیریت اوراق بهادار، دوره4، شماره17، صص103-115.
اسدی، احسان؛ زارع، هاشم؛ ابراهیمی، مهرزاد؛ پیرایی، خسرو.(1397). تکانه احساسی و حباب های قیمت سهام در چارچوب الگوی تعادل عمومی پویای تصادفی: مطالعه موردی ایران، نظریه های کاربردی اقتصاد، دوره7،شماره2،صص 115-150.
امینی فرد، عباس؛ زارع، ابراهیم؛ ابراهیمی، مهرزاد.(1399). قیمتگذاری دارایی مالی با استفاده از ریسک حباب قیمتی، راهبرد مدیریت مالی،دوره8،شماره3،صص 201-232.
داستانی هریس، سارا؛ ترابی، تقی؛ انواری رستمی، علی اصغر.(1399). اراِئه مدلی جهت برآورد احتمال ایجاد حباب قیمتی در بازار سرمایه ؛ شواهد تجربی و تئوریک از بورس اوراق بهادار تهران، دانش سرمایه گذاری، دوره3،شماره34،صص 371-187.
رمضانی، علی؛ باقری، اویس.(1398). آزمون تاثیر حباب های قیمتی سفته بازی منطقی مبتنی بر تئوری محدودیت بر نرخ بازده کل واقعی شرکتهای منتخب در بازار بورس اوراق بهادار تهران، دانش سرمایه گذاری،دوره8،شماره32،صص1-20.
سهیلی، کیومرث؛ فتاحی، شهرام؛ رحمانیانی، نرگس.(1399). بررسی تأثیر شوکهای احساسی بر حباب قیمت سهام با استفاده از مدل تعادل عمومی تصادفی پویا (DSGE)،مطالعات و سیاست های اقتصادی، مقالات آماده انتشار.
صابری، مریم؛ دارابی، رویا؛ حمیدیان، محسن.(1398). پرتفوی بهینه در فضای حباب سوداگری بر اساس حسابداری ذهنی، دانش سرمایه گذاری، دوره8،شماره30،صص 210-191.
عباسی، غلامرضا؛ محمدی، هادی؛ نشاط آور، امین.(1397). بررسی نقش حباب قیمتی در ایجاد نوسانات در بورس اوراق بهادار تهران ( شرکتهای منتخب صنایع پترو شیمی و خودرو)، فصلنامه اقتصاد مالی،دوره12،شماره43،صص 133-152.
Alexander,K.,Lenya,R.(2010).A simple model for asset price bubble formation and collapse, showing 1-1
Ayesha, L,.Mian, S. N,.Iftikhar, A.(2018).Identifcation of multiple stock bubbles in an emerging market: application of GSADF approach,Econ Change Restruct: https://doi.org/10.1007/s10644-018-9230-0
T, Hennequinb. M, Hommesb. C, Massaro. D(2019). Coordination on bubbles in large-group asset pricing experiments. Journal of Economic Dynamics and Control. Available online 23 May 2019 In Press, Corrected Proof What are Corrected Proof articles?
Bohl, M. T., Kaufmann, P., & Stephan, P. (2013). From hero to zero: Evidence of performance reversal and speculative bubbles in german renewable energy stocks. Energy Economics, 37, 40-51.
Chi-Wei, S, Xiao-Qing, W, Haotian, Zh, Ran, T, Nicoleta-Claudia, M, Oana-Ramona, L.(2020). Testing for multiple bubbles in the copper price: Periodically collapsing behavior, Resources Policy. 2020 Mar; 65: 101587.doi: 1016/j.resourpol.2020.101587
Wei(2018). Sentiment and asset price bubble in the precious metals markets. Finance Research Letters. Volume 26, September 2018, Pages 106-111
Hou, H., & Cheng, S. Y. (2017). The dynamic effects of banking, life insurance, and stock markets on economic growth. Japan and the World Economy, 41, 87–98.
Iens,W.(2019). Bubble Detection in Financial Markets A Survey of Theoretical Bubble Models and Empirical Bubble Detection Tests, See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/336085827.
Ikeda, D. (2013). Monetary policy and inflation dynamics in asset price bubbles. Bank of Japan Working Paper Series, No.13-E-4.
Irandoust M. (2017).Metal prices and stock market performance: is there an empirical link? Resour. Policy.;52:389–392.
Itamar, C, Meital, G, (2017). TESTING FOR BUBBLES IN STOCKMARKETS WITH IRREGULAR DIVIDEND DISTRIBUTION, Finance Research Letters, doi:1016/j.frl.2017.12.015
Janssen, D.J. Füllbrunn,S,. & Weitzel,U.(2019). Individual speculative behavior and overpricing in experimental asset markets, Experimental Economics : 22, pp653–675.
Jokara,H, Shamsaddini,K,.Daneshi,V.(2018). Investigating the Effect of Investors' Behavior and Management on the Stock Returns : Evidence from Iran ,Advances in mathematical finance & applications, 3 (3), pp41-52.
Madjumerd,M H, Gh.Shahiki Tash,M.n.(2017). Evaluation of Multiple Bubbles in the Stock Market of Tehran, Quarterly Journal of Quantitative Economics, Summer 2017, 14(2): 85-110
Miao, J. (2014). Introduction to economic theory of bubbles. Journal of
Okpara, G. (2010). Do Rational Speculative Financial Bubbles Exist in the Nigerian Stock Market? Interdisciplinary Journal of Contemporary Research in Business.
Oliveira, M. M., & Almeida, A. C. (2014). Testing for rational speculative bubbles in the Brazilian residential real-estate market. arXiv preprint arXiv:1401.7615.
Sandra,A.(2020). Stock Markets, Market Crashes, and Market Bubbles, Psychological Perspectives on Financial Decision Making, pp 205-231.
Soni,R,. Rahul,M.(2016). behavioral finance “mind over market” ? a case study of techno bubble, SRJ'S FOR HUMANITY SCIENCES & ENGLISH LANGUAGE.3(17). pp 3887-3902
Wang, H. , Wang, X. , Bu, F. , Wang, G. and Pan, Y. (2018) How the Asymmetric Information Creates Bubbles in Stock Market?. Open Journal of Social Sciences, 6, 202-215. doi: 4236/jss.2018.68016.
Yao,W, Gang ,L.(2018). Study on the relationship between investor sentiment and stock bubble, Chinese Control And Decision Conference (CCDC), DOI: 1109/CCDC.2018.8407304
Yasushi,A,Yukihiko,F, Kozo, U, Nobuyu, k.(2020).(A)symmetric information bubbles: Experimental evidence, Journal of Economic Dynamics and Control110, January, 103744, /doi.org/10.1016/j.jedc.2019.103744.
Zheng,Ch, Cui,X.(2020).Simulation on Artificial Stock Market Bubble Based on the Perspective of Investor Behavior, IEIS, pp 407-420 : https://doi.org/10.1007/978-981-15-5660-9_31
Zhu, B., Niu, F., (2016).Investor sentiment, accounting information and stock price: Evidence from China. Pacific-Basin Finance Journal, 38(3), P.125-134.
_||_