A Model to Predict Bankruptcy using the Mechanisms of Corporate Governance and financial ratios
Subject Areas :
Journal of Investment Knowledge
ghazaleh Alibabaee
1
,
Hamed Khanmohammadi
2
1 - PhD student, Department of Accounting, Islamic Azad University, Damavand Branch, Damavand, Iran
2 - Assistant Professor, Department of Accounting, Islamic Azad University, Damavand Branch, Damavand, Iran
Received: 2020-12-06
Accepted : 2021-01-13
Published : 2023-12-22
Keywords:
Bankruptcy Prediction,
Artificial Intelligence,
Financial Ratios,
Corporate Governance,
Abstract :
Improving the economic and business environment is the most important factor in preventing bankruptcy, therefor, Artificial intelligence uses to predict the bankruptcy of companies in the future. In this study, companies in the Tehran Stock Exchange over a period of 10 years in terms of bankruptcy localized model of Kurdistani-Tatli based on the Altman model were examined and companies were identified as bankrupt and healthy. Research data were collected, categorized and refined using secondary data extracted from financial statements and through the database of the Exchange Organization and the Central Bank.The models used to evaluate the data and predict the bankruptcy of companies are artificial intelligence models . Artificial neural network, combination of neural network and genetic algorithm and the K-nearest neighbor method has been used. They were also compared in terms of prediction accuracy. The output of the models indicates that the addition of corporate governance indicators to the financial ratios indicators has not improved the results. Therefore, financial ratios alone are sufficient for predicting and determining bankruptcy. The proposed model of this research based on accuracy is a combined model of neural network and genetic algorithm that has the highest accuracy. Genetic algorithm improves the optimal results of the neural network and provides a more optimal answer.
References:
بیات، احمدیز و محمدی،1397، پیش بینی ورشکستگی شرکت با استفاده از الگوریتم کرم شب تاب، فصلنامه مهندسی مالی و مدیریت اوراق بهادار، شماره 37، ص 234-262.
پیرایش ،آرانی و برزگر ،1396، ارائه مدل ریاضی پیش بینی ورشکستگی شرکت ها ی پذیرفته شده در بورس اوراق بهادار تهران، فصلنامه مهندسی مالی و مدیریت اوراق بهادار، شماره 31، ص 187-200.
شورورزی و خلیلی، بهار 1394، ارﺗﺒﺎط ﺑﯿﻦ ﺣﺎﻛﻤﯿﺖﺷﺮﻛﺘﻲ و ﻋﻤﻠﻜﺮد ﺷﺮﻛﺖ ﺑﺮﻣﺒﻨﺎی رﮔﺮﺳﯿﻮنﻓﺎزی، فصلنامه پژوهش های حسابداری مالی و حسابرسی شماره 25، ص 127-145.
غضنفری ورحیمی کیا، عسگری،1396، پیش بینی ورشکستگی شرکت ها مبتنی بر سیستم های هوشمند ترکیبی فصلنامه پژوهش های حسابداری مالی و حسابرسی شماره 37، ص 159-194.
قاسمی و رمضانپور ،1396، پیش بینی ورشکستگی شرکت های پذیرفته شده در سازمان بورس و اوراق بهادار با استفاده از شبکه عصبی مصنوعی، فصلنامه علمی پژوهشی دانش سرمایه گذاری، شماره 26، ص 277-296.
کردستانی و تاتلی، بهار 1393، ارزیابی توان پیش بینی مدل های ورشکستگی، فصلنامه دانش سرمایه گذاری، شماره 9، ص 83-99.
Jeong, C., Min, J. H., & Kim. M. S, 2012. A tuning method for the architecture of neural network models incorporating GAM and GA as applied to bankruptcy prediction. Expert Systems with Applications. 39(3): 3650-3658.
Kim, Myoung-Jong & Dae-Ki Kang, 2012, Classifiers selection in ensembles using genetic algorithms for bankruptcy prediction. Expert Systems with Applications, pp. 1-7
Liou, F. M, 2008, Fraudulent financial reporting detection and business failure prediction models: A comparison. Managerial Auditing Journal. 23(7): 650- 662.
Olson, David L, Dursun Delen & Yanyan Meng, 2012, Comparative analysis of data mining methods for bankruptcy prediction. Decision Support Systems, 52: pp. 464˚ 473
Wang,G., Ma, J., & Yang, S, 2014,“An Improved Boosting Based on Feature Selection for Corporate Bankruptcy Prediction”,Expert Systems with Applications, 41(5), PP.2353-2361
Wu, C.H. Tzeng. G.H., Yeong-Jia G. and Fang W.C., 2007, A Real-Valued Genetic Algorithm, To Optimize the Parameters of Support Vector Machine for Prediction Bankruptcy, Journal of Expert Systems with Application, Vol. 32, pp. 397-408.
Yildiz, B. and Akkoc, S, 2010, Bankruptcy Prediction Using Neuro Fuzzy: An Application in Turkish Banks, International Research Journal of Finance and Economics, 60,114-126.
_||_