Overflow of parallel markets of Tehran Stock Exchange over the trading industries of the stock exchange.
Subject Areas :
Journal of Investment Knowledge
hashem mokari
1
,
seyed alireza mirarab bayigi
2
*
,
Hoda Hemmati
3
1 - Ph.D. student Financial engineering Islamic Azad University Roudehen ، Tehran، Iran.
2 - Assistant Professor،Islamic Azad University Roudehen، Tehran، Iran.
3 - Assistant Professor،Islamic Azad University Roudehen، Tehran، Iran.
Received: 2021-04-06
Accepted : 2021-06-28
Published : 2022-12-22
Keywords:
Multivariate Cloud,
Rebellion Overflow,
Commercial Industries,
parallel markets,
Abstract :
The present study investigates the prevalence of parallel capital market revolts on stock exchange trading industries. In this study, the overflow of stock exchange industries has been measured separately for export and import-oriented parallel markets of currency and gold. In this regard, the autoregressive vector analysis (VAR) method and the autoregressive model conditional on the heterogeneity of multivariate generalized variances (MGARCH) have been used. The data of this research have been collected and tested using Eviews software from the beginning of September 2015 to the end of August 2016. The method of the present study is based on the classification of research based on the method, nature and direction of descriptive, applied and post-event, respectively, and is considered as a correlation in terms of type.The results of this study confirm the relationship between the effect of the overflow of export-oriented stock exchange industries from the parallel foreign exchange market; However, the research results of this overflow have not been confirmed by the parallel gold market. In this regard, the effect of the overflow of import-oriented industries from the parallel markets of currency and gold has not been confirmed. The side findings of the present study also show that there was a positive and two-way relationship between the two markets of currency and gold in the period under study.
References:
ابونورى، اسمعیل. عبدالهى، محمدرضا. مدل-سازى نوسانات گروههاى صنعت بازار سهام با استفاده از مدل گارچ چندمتغیره، دانشگاه علامه طباطبایى، پایاننامه کارشناسى ارشد، ١398.
سید حسینى، سید محمد. مدلهاى سرایت شورش در بازار سهام بورس اوراق بهادار، ١٣9٥.
زمانى، شیوا. سورى، داوود و محسن ثنایى اعلم. پیش بینى پذیرى و شورش بازده و بررسى سرایت شاخص ها با استفاده از یک مدل دینامیک چند متغیره در بورس اوراق بهادار تهران. پایان نامه کارشناسى ارشد، دانشکده مدیریت و اقتصاد دانشگاه صنعتى شریف، دى١٣9٧
سعید شعرائى، مدلسازى و پیشبینى بازده بورس اوراق بهادار تهران با استفاده از مدلهاى ARFIMA و FIGARCH، پایان نامه کارشناسى ارشد مدیریت مالى، دانشکده مدیریت و حسابدارى دانشگاه شهید بهشتى، تابستان ١٣9٨
Li, H. Majerowska, E.(2017) Testing stock market linkages for Poland and Hungary: A multivariate GARCH approach, Rese ARCH in International Business and Finance, vol. 22 (2018), pp. 247-266
Kim, S.W. and J.H. Rogers, (2015), International stock price spillovers and market liberalization: Evidence from Korea, Japan, and the United States. Journal of Empirical Finance, No.2, pp. 117-133.
Connolly, R. A., F. A. Wang (2017), “Economic News and Stock Market Linkages: Evidence from the U.S., U.K., And Japan,” Columbia University’s Graduate School of Business.
Berkowitz, J. (2020), Testing Density Forecasts with Applications to Risk Management, Journal of Busi- ness & Economic Statistics, No.19, pp.465-474
Andersen T.G., T. Bollerslev, F.X. Diebold and P. Labys (2020b), The Distribution of Realized Exchange Rate Volatility, Journal of the American Statistical Association, No.96, pp.42-55.
Bollerslev T. and J.H. Wright (2016), High-Frequency Data, Frequency Domain Inference, and Volatility Forecasting, Review of Economics and Statistics, No. 83, pp. 596-602.
Weller, P.A. and Neely, C.J. (2016), Predicting Exchange Rate Volatility: Genetic Programming vs. GA- RCH and RiskMetrics, The Federal Reserve Bank Of St. Louis
Maheu, J.M. and T.H. McCurdy (2017), Nonlinear Features of Realized FX Volatility, Review of Econo- mics and Statistics 84, 668-681.
Andersen, T.G., T. Bollerslev and F.X. Diebold (2017), Parametric and Nonparametric volatility measur- ement, forthcoming in A¨١t-Sahalia and L.P. Hansen (eds.), Handbook of Financial Econometrics, Amsterdam: North Holland.
Ewing, B. T., Forbes, S. M., & Payne, J. E. (2018). The effects of macroeconomic shocks on sector-specific returns. Applied Economics, Vol.35, pp.201ـ
Worthington, A, and Higgs, H.(2019) Transmission of equity returns and volatility in Asian developed and emerging markets: a multivariate GARCH analysis, international journal of finance and economics, vol. 9, pp. 71-80
Lafuente, J. and Ruiz, J. (2019), The New market effect on return and volatility of Spansh stock indexes, Applied Financial Economics, 14, 1343-1350.
Mittnik,S and H. Claessen (2019), Forecasting Stock Market Volatility and the Informational Efficiency of the DAX Index Options Market, Center For Financial studies.
Wang, Z., Kutan A., and Yang, J. (2020). Information flows within and across sectors in Chinese stock markets. The Quarterly Review of Economics and Finance, 45, 767-80.
Bernanke, B. S., & Kuttner, K. N. (2020). What explains the stock market’s reaction to Federal Reserve policy? Journal of Finance, 60, 1221-1257.
Yu, J. Hassan, K (2016) Global and regional integration of the Middle East and North African (MENA) stock markets, The Quarterly Review of Economics and Finance, vol. 13, pp. 482-504
Mohamad, S., Hassan, T., and Sori, Z.M. (2016). Diversification across economic sectors and implication on portfolio investments in Malaysia. International Journal of Economics and Management, 1(1), 155-72.
Hassan, S. A., & Malik, F. (2017). Multivariate GARCH modeling of sector volatility transmission. Quarterly Review of Economics and Finance, Vol.47, pp.470-480.
Li, H. (2017), International linkages of the Chinese stock exchanges: a Multivariate GARCH Analysis, Applied Financial Economics 17: 285-297.
_||_