Numerical analysis of the optimal catalyst distribution in created unsteady state conditions
Subject Areas : Journal of the Iranian Chemical ResearchYacine Benguerba 1 , Brahim Djellouli 2 , Lemnouer Chibane 3 , Lahcene Bencheikh 4
1 - Laboratoire de Génie des Procédés Chimiques, Université Ferhat Abbas Sétif, 19000, Sétif, Algérie
2 - Laboratoire de Génie des Procédés Chimiques, Université Ferhat Abbas Sétif, 19000, Sétif, Algérie
3 - Laboratoire de Génie des Procédés Chimiques, Université Ferhat Abbas Sétif, 19000, Sétif, Algérie
4 - Laboratoire de Génie des Procédés Chimiques, Université Ferhat Abbas Sétif, 19000, Sétif, Algérie
Keywords: Unsteady state, Optimal catalyst distribution, Forced perturbation, Temperature modulation, Concentration modulation,
Abstract :
The determination of the optimal distribution of the catalytic activity profile, whichmaximizes the catalytic effectiveness, in created unsteady state conditions, is analyzed andtreated numerically for the case of a simple reaction. It was proven that the modulation, of thetemperature and the reactant concentration of the external bulk fluid, leads to a considerableincrease of the catalytic effectiveness. The optimal active element distribution is a Dirac- δfunction i.e. all the catalyst must be deposited at a specific distance from the center of thecatalytic pellet. It was shown that this optimal position changes with time in a sinusoidal manner.This purpose can be achieved by the use of ultrasounds to artificially control the activity profile.
[1] R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Vol. 1.
Clarendon Press, Oxford, 1975.
[2] R.C. Dougherty, X.E. Verykios, A.I.Ch.E. J. 32 (1986) 1858.
[3] R.C. Dougherty, X.E. Verykios, Catal. Rev. Sci. Eng. 29 (1987) 101.
[4] B.A. Finlayson, Nonlinear Analysis in Chemical Engineering, McGraw-Hill, New York, 1980.
[5] J. Villadsen, M.L. Michelsen, Solution of Differential Equation Models by Polynomial
Approximation, Prentice-Hall, Englewood Cliffs, N.J. 1978.
[6] M. Morbidelli, A. Servida, A. Varma, Ind. Eng. Chem. Fund. 21 (1982) 278.
[7] M. Morbidelli, A. Varma, Ind. Eng. Chem. Fund. 21 (1982) 289.
[8] M. Morbidelli, A. Servida, S. Carra, A. Varma, Ind. Eng. Chem. Fund. 24 (1985) 116.
[9] H. Wu, A. Brunovska, M. Morbidelli, A. Varma, Chem. Eng. Sci. 45 (1990) 1855.
[10] R. Baratti, C. Giacomo, M. Morbidelli, Chem. Eng. Sci. 45 (1990) 1643.
[11] R. Baratti, H. Wu, M. Morbidelli, A. Varma, Chem. Eng. Sci. 48 (1993) 869.
[12] C.G. Vayenas, S. Pavlou, Chem. Eng. Sci. 42 (1987) 2633.
[13] R.M. Chemburkar, M. Morbidelli, A. Varma, Chem. Eng. Sci. 42 (1987) 2621.
[14] V.P. Zhdanov, Surface Science Reports, 55 (2004) 1.
[15] H.A. Hansen, J.L. Olsen, S. Jensen, O. Hansen, U.J. Quaade, Catalysis Communications 7 (2006)
272.
[16] V.V. Andreev, G.N. Ostryakov, G.G. Telegin, Chem. Phys. Reports 16 (1997) 159.
[17] V.V. Andreev, Mendeleev Communications 1 (1997) 35.
[18] V.V. Andreev, Mendeleev Communications 2 (1998) 43.
[19] V.V. Andreev, Ultrasonic Sonochemistry 6 (1999) 21.
[20] V.V. Andreev, A.V. Litvinenko, D.V. Lysenko, O.L. Figovsky, Sci. Israel-Tech. Adv. 2 (2000) 47.
[21] D. Luss, Chem. Eng. Sci. 26 (1971) 1713.
[22] W.E. Corbet, D. Luss, Chem. Eng. Sci. 29 (1974) 1473.
[23] J.B. Wang, A. Varma, Chem. Eng. Sci. 35 (1980) 613.