Characterization, photocatalytic, and antibacterial activity of Ag–TiO2 nanoparticles prepared by electrical arc discharge method
Subject Areas : Journal of the Iranian Chemical ResearchMahdi Hajivaliei 1 * , Majid Lashkanpour 2
1 - Department of Physics, Bu-Ali Sina University, Hamedan, Iran
2 - Department of Physics, Bu-Ali Sina University, Hamedan, Iran
Keywords: antibacterial activity, Ag-TiO2 nanoparticles, Electrical arc discharge method, Photocatalytic Activity,
Abstract :
A simple, inexpensive and one-step synthesis route of Ag-TiO2 nanoparticles by arc discharge method isreported. The resulting nanoparticles were characterized using X-ray diffraction and scanning electronmicroscopy. X-ray diffraction patterns demonstrate dominance of rutile to anatase phase in TiO2 andformation of silver metal on TiO2 after arc discharge process. Scanning electron microscopy images exhibitthe increase of reduced nanoparticles in 5 minutes arc duration compared with 1 minute arc duration.Photodegradation of Methyl Orange as a standard pollutant shows that the presence of silver in TiO2 wasfound to enhance the photocatalytic activity. The high activity of silver doped TiO2 is due to theenhancement of electron–hole separation by the electron trapping of silver particles. Antibacterial activitiesof Ag-TiO2 nanoparticles were investigated at the presence of Escherichia coli bacteria.
[1] J. Yu, J. Xiong, B. Cheng, S. Liu, Appl. Catal. B: Environ. 60 (2005) 211-221.
[2] H. Xing-Gang, L. An-Dong, H. Mei-Dong, L. Bin, W. Xiao-Ling, Chin. Phys. Lett. 26 (2009) 771061-
771064.
[3] L. Escobar-Alarco´n, A. Arrieta, E. Camps, S. Muhl, S. Rodil, E. Vigueras-Santiago, Appl. Surf. Sci. 254
(2007) 412-415.
[4] C.C. Chang, J.Y. Chen, T.L. Hsu, C.K. Lin, C.C. Chan, Thin Solid Films 516 (2008) 1743-1747.
[5] L. Wan, J.F. Li, J.Y. Feng, W. Sun, Z.Q. Mao, Mater. Sci. Eng. B 139 (2007) 216-220.
[6] J. McCormick, B. Zhao, S. Rykov, H. Wang, J.G. Chen, J. Phys.Chem. B 108 (2004) 17398-17402.
[7] L. Zan, L. Tian, Z. Liu, Z. Peng, Appl. Catal. A Gen. 264 (2004) 237-242.
[8] B. Xin, Z. Ren, H. Hu, X. Zhang, C.Dong, K. Shi, L. Jing, H. Fu, Appl. Surf. Sci. 252 (2005) 2050-2055.
[9] L. Ge, M. Xu, H. Fang, J. Mol. Catal. A-Chem. 258 (2006) 68-76.
[10] M. Hemissi, H. Amardjia-Adnani, J. Plenet, Curr. Appl. Phys. 9 (2009) 717-721.
[11] S. SekharSamal, P. Jeyaraman, V. Vishwakarma, J. Min. Mater. Char. Eng. 9 (2010) 519-525.
[12] M. Nasr-Esfahani, H. Habibi, Int. J. Photoenergy (2008) Article ID 628713.
M. Hajivaliei & M. Lashkanpour, J. Iranian Chem. Res. 5 (1) (2012) 39-46
46
[13] C. Li, Y. Hsieh, W. Chiu, C. Liu, C. Kao, Sep. Purif. Technol. 58 (2007) 148-151.
[14] M. Lee, S. Hong, M. Mohseni, J. Mol. Catal. A-Chem. 242 (2005) 135-140.
[15] J. Matos, J. Laine, J. Herrmann, Appl. Catal. B-Environ. 18 (1998) 281-291.
[16] S. Sena, S. Mahanty, S. Roy, O. Heintz, S. Bourgeois, D. Chaumont, Thin Solid Films 474 (2005) 245-
249.
[17] L. Ren, Y. Zeng, D. Jiang, Catal. Commun. 10 (2009) 645–649.
[18] H. Sung-Suh, J. Choi, H. Hah, S. Koo, Y. Bae, J. Photochem. Photobio. A 163 (2004) 37-44.
[19] S. Sun, B.Sun, W.Zhang, D. Wang, Bull. Mater. Sci. 31 (2008) 61-66.
[20] C. Li-yuan, W. Shun-wen, P. Bing, L. Zhu-ying, Trans Nonferrous met. Soc. China 18 (2009) 980-985.
[21] X. Houa, M. Huanga, X. Wub, A. Liu, Chem. Eng. J. 146 (2009) 42-48.
[22] J. Sung Kim, S. Jin Park, Y. Kyung Park, C. Hwang, Nanomed. Nanotechnol. Biol. Med. 3 (2007) 95-
101.
[23] X. Chen, H. Schluesener, Toxicol. Lett. 176 (2008) 1-12.
[24] A. Ashkarran, Curr. Appl. Phys. 10 (2010) 1442-1447.
[25] W. Lawrence Drew, A.L. Barry, R. Otoole, J.C. Sherris, Appl. Environ. Microbiol. 24(2) (1972) 240-
247.
[26] B. Ghalem, B. Mohamed, African J. Pharm. Pharmaco. 3 (2009) 92-96.
[27] D. Liao, C. Badour, B. Liao, J. Photochem. Photobio. A 194 (2008) 11-19.
[28] Y. Li, X. Li, J. Li, J. Yin, Water Res. 40 (2006) 1119-1126.