Identify and Prioritize Internet of Things Technological Applications on Hospital Quality Management Using a Structural Interpretive Approach
Subject Areas : Medical bookkeeping and informationMahdi Hosseinpour 1 * , hossein karimi 2 , Milad Bakhsham 3 , Atieh Khodaei 4
1 - Assistant Professor, Department of Management and Entrepreneurship, Faculty of Social Sciences, Razi University, Kermanshah, Iran
2 - Master student, Department of Management and Entrepreneurship, Faculty of Social Sciences, Razi University, Kermanshah, Iran
3 - Master student, Department of Management and Entrepreneurship, Faculty of Social Sciences, Razi University, Kermanshah, Iran
4 - PhD Student in Entrepreneurship, Faculty of Social Sciences, Razi University, Kermanshah, Iran
Keywords: interpretive-structural approach, : Internet of Things, hospital quality management, technological application,
Abstract :
Introduction: In recent years, hospitals have faced various challenges, such as budget cuts and increased competition in the healthcare field. Internet of Things based health care is expected to increase quality of life in addition to reducing costs. The purpose of this study is to identify and prioritize Internet of Things technological applications on hospital quality management using a structural interpretive approach. Methods: The present research is applied in terms of purpose, mixed in terms of research nature and a descriptive-analytical research in terms of data collection method. The most important technological applications of Internet of Things on hospital quality management through Delphi method (in 2 stages) were identified and interpretive-structural modeling was used to analyze the information. Results: Applications of controlling the vital signs of the patient, caring for patients without the need for the presence of the person on site, checking the inventory of equipment and essentials, tracking and monitoring the performance of staff, patients and inventory, intelligent monitoring and regulation of environmental conditions of patient care and medication, road visits patient turnover in acute and special times, reduction of hospital waste, monitoring of physical activity of the elderly and launching online communities and online medical consulting were identified as the key factors. Conclusion: Due to the effectiveness of the Internet of Things in the field of health care, medical center officials are advised to make appropriate changes in the field of information technology so that they can take useful steps to improve the quality of their services.
1- Huang Z, Xu X, Ni J, Zhu H, Wang C. Multimodal representation learning for recommendation in Internet of Things. IEEE Internet of Things Journal, 2019; 11; 6(6): 10675-85.
2- Hui H, Zhou C, Xu S, Lin F. A novel secure data transmission scheme in industrial internet of things. China Communications, 2020 28; 17(1): 73-88.DOI: 10.23919/JCC.2020.01.006
3- Izadinia H, Soltani sharif abadi A. Exploring the architecture of intelligent transportation in an IoT-based smart city. First International IoT Conference, Applications and Infrastructure. Esfahan. Iran; 2017. [In Persian]
4- Marques G, Pitarma R, M Garcia N, Pombo N. Internet of Things architectures, technologies, applications, challenges, and future directions for enhanced living environments and healthcare systems: a review. Electronics, 2019; 8(10): 1081. DOI: 10.3390/electronics8101081
5- Baker SB, Xiang W, Atkinson I. Internet of things for smart healthcare: Technologies, challenges, and opportunities. IEEE Access, 2017 29; 5: 26521-44. DOI: 10.1109/ACCESS.2017.2775180
6- Dhanvijay MM, Patil SC. Internet of Things: A survey of enabling technologies in healthcare and its applications. Computer Networks, 2019 22; 153: 113-31.DOI: 10.1016/j.comnet.2019.03.006
7- Qi J, Yang P, Min G, Amft O, Dong F, Xu L. Advanced internet of things for personalised healthcare systems: A survey. Pervasive and Mobile Computing, 2017; 1(41):132-49. DOI: 10.1016/j.pmcj.2017.06.018
8- Koch S. Home telehealth—current state and future trends. International journal of medical informatics, 2006; 75(8): 565-76.
9- Olivares A, Olivares G, Mula F, Górriz JM, Ramírez J. Wagyromag: Wireless sensor network for monitoring and processing human body movement in healthcare applications. Journal of systems architecture, 2011; 57(10): 905-15.
10- Gulcharan NF, Daud H, Nor NM, Ibrahim T, Shamsudin MZ. Investigation of Stability and Reliability of the Patient's Wireless Temperature Monitoring Device. InMoWNet; 2014: 151-159).
DOI: 10.1016/j.procs.2014.12.022
11- Fox GC, Kamburugamuve S, Hartman RD. Architecture and measured characteristics of a cloud based internet of things. In2012 international conference on Collaboration Technologies and Systems (CTS); 2012: 6-12). IEEE.
12- Xiong J, He Z, Deng Y, Zhang M, Zhang Z. Quality management practices and their effects on the performance of public hospitals. International Journal of Quality and Service Sciences; 2017
13- Din IU, Almogren A, Guizani M, Zuair M. A decade of Internet of Things: Analysis in the light of healthcare applications. IEEE Access; 2019; 7: 89967-79.
14- Namazi Z, Kalantari N, Nezamolhosseini SA. IoT and smart health, the benefits and challenges ahead. 3rd International Conference on Applied Research in Computer Engineering and Information Technology; 2015. [In Persian]
15- Byrne S. Remote Medical Monitoring and Cloud-based Internet of Things Healthcare Systems. American Journal of Medical Research, 2019; 6(2): 19-24.
16- Rashidi M, Moghli A, Rasouli R. Designing a Model for Enhancing Organizational Sustainability of Basic Knowledge Employees: Using Delphi Technique. Career and organizational counseling; 2014: 66-94. [In Persian]
17- Aliakbari E, Akbari M. An interpretive structural modeling affected factors on the metropolis Tehran’s viability. Teachers of human sciences(Programing and Space preparation); 2017. [In Persian]
18- Mudgal RK, Shankar R, Talib P, Raj T. Modelling the barriers of green supply chain practices: an Indian perspective. International Journal of Logistics Systems and Management, 2010; 7(1): 81-107.
19- Zar JH. Biostatistical analysis 4th edition prentice-hall. Jersey, New; 1999.
20- Olfat l, Shahriarinia A. Interpretive structural modeling of the factors influencing the choice of partner in the agile supply chain. Production Management and Operations; 2013; 2: 109-128. [In Persian]
21- Bayo-Monton JL, Martinez-Millana A, Han W, Fernandez-Llatas C, Sun Y, Traver V. Wearable sensors integrated with Internet of Things for advancing eHealth care. Sensors, 2018; 18(6): 1851.
DOI: 10.3390/s18061851
22- Ben-Daya M, Hassini E, Bahroun Z. Internet of things and supply chain management: a literature review. International Journal of Production Research, 2019; 57(15-16): 4719-42. DOI:10.1080/00207543.2017.1402140
23- Rath M, Pattanayak B. Technological improvement in modern health care applications using Internet of Things (IoT) and proposal of novel health care approach. International Journal of Human Rights in Healthcare; 2019. DOI: 10.1108/IJHRH-01-2018-0007
24- Manogaran G, Varatharajan R, Lopez D, Kumar PM, Sundarasekar R, Thota C. A new architecture of Internet of Things and big data ecosystem for secured smart healthcare monitoring and alerting system. Future Generation Computer Systems, 2018; 82: 375-87. DOI: 10.1016/j.future.2017.10.045
25- Wagner C, Gulácsi L, Takacs E, Outinen M. The implementation of quality management systems in hospitals: a comparison between three countries. BMC health services research, 2006; 6(1): 50. DOI: 10.1186/1472-6963-6-50
_||_1- Huang Z, Xu X, Ni J, Zhu H, Wang C. Multimodal representation learning for recommendation in Internet of Things. IEEE Internet of Things Journal, 2019; 11; 6(6): 10675-85.
2- Hui H, Zhou C, Xu S, Lin F. A novel secure data transmission scheme in industrial internet of things. China Communications, 2020 28; 17(1): 73-88.DOI: 10.23919/JCC.2020.01.006
3- Izadinia H, Soltani sharif abadi A. Exploring the architecture of intelligent transportation in an IoT-based smart city. First International IoT Conference, Applications and Infrastructure. Esfahan. Iran; 2017. [In Persian]
4- Marques G, Pitarma R, M Garcia N, Pombo N. Internet of Things architectures, technologies, applications, challenges, and future directions for enhanced living environments and healthcare systems: a review. Electronics, 2019; 8(10): 1081. DOI: 10.3390/electronics8101081
5- Baker SB, Xiang W, Atkinson I. Internet of things for smart healthcare: Technologies, challenges, and opportunities. IEEE Access, 2017 29; 5: 26521-44. DOI: 10.1109/ACCESS.2017.2775180
6- Dhanvijay MM, Patil SC. Internet of Things: A survey of enabling technologies in healthcare and its applications. Computer Networks, 2019 22; 153: 113-31.DOI: 10.1016/j.comnet.2019.03.006
7- Qi J, Yang P, Min G, Amft O, Dong F, Xu L. Advanced internet of things for personalised healthcare systems: A survey. Pervasive and Mobile Computing, 2017; 1(41):132-49. DOI: 10.1016/j.pmcj.2017.06.018
8- Koch S. Home telehealth—current state and future trends. International journal of medical informatics, 2006; 75(8): 565-76.
9- Olivares A, Olivares G, Mula F, Górriz JM, Ramírez J. Wagyromag: Wireless sensor network for monitoring and processing human body movement in healthcare applications. Journal of systems architecture, 2011; 57(10): 905-15.
10- Gulcharan NF, Daud H, Nor NM, Ibrahim T, Shamsudin MZ. Investigation of Stability and Reliability of the Patient's Wireless Temperature Monitoring Device. InMoWNet; 2014: 151-159).
DOI: 10.1016/j.procs.2014.12.022
11- Fox GC, Kamburugamuve S, Hartman RD. Architecture and measured characteristics of a cloud based internet of things. In2012 international conference on Collaboration Technologies and Systems (CTS); 2012: 6-12). IEEE.
12- Xiong J, He Z, Deng Y, Zhang M, Zhang Z. Quality management practices and their effects on the performance of public hospitals. International Journal of Quality and Service Sciences; 2017
13- Din IU, Almogren A, Guizani M, Zuair M. A decade of Internet of Things: Analysis in the light of healthcare applications. IEEE Access; 2019; 7: 89967-79.
14- Namazi Z, Kalantari N, Nezamolhosseini SA. IoT and smart health, the benefits and challenges ahead. 3rd International Conference on Applied Research in Computer Engineering and Information Technology; 2015. [In Persian]
15- Byrne S. Remote Medical Monitoring and Cloud-based Internet of Things Healthcare Systems. American Journal of Medical Research, 2019; 6(2): 19-24.
16- Rashidi M, Moghli A, Rasouli R. Designing a Model for Enhancing Organizational Sustainability of Basic Knowledge Employees: Using Delphi Technique. Career and organizational counseling; 2014: 66-94. [In Persian]
17- Aliakbari E, Akbari M. An interpretive structural modeling affected factors on the metropolis Tehran’s viability. Teachers of human sciences(Programing and Space preparation); 2017. [In Persian]
18- Mudgal RK, Shankar R, Talib P, Raj T. Modelling the barriers of green supply chain practices: an Indian perspective. International Journal of Logistics Systems and Management, 2010; 7(1): 81-107.
19- Zar JH. Biostatistical analysis 4th edition prentice-hall. Jersey, New; 1999.
20- Olfat l, Shahriarinia A. Interpretive structural modeling of the factors influencing the choice of partner in the agile supply chain. Production Management and Operations; 2013; 2: 109-128. [In Persian]
21- Bayo-Monton JL, Martinez-Millana A, Han W, Fernandez-Llatas C, Sun Y, Traver V. Wearable sensors integrated with Internet of Things for advancing eHealth care. Sensors, 2018; 18(6): 1851.
DOI: 10.3390/s18061851
22- Ben-Daya M, Hassini E, Bahroun Z. Internet of things and supply chain management: a literature review. International Journal of Production Research, 2019; 57(15-16): 4719-42. DOI:10.1080/00207543.2017.1402140
23- Rath M, Pattanayak B. Technological improvement in modern health care applications using Internet of Things (IoT) and proposal of novel health care approach. International Journal of Human Rights in Healthcare; 2019. DOI: 10.1108/IJHRH-01-2018-0007
24- Manogaran G, Varatharajan R, Lopez D, Kumar PM, Sundarasekar R, Thota C. A new architecture of Internet of Things and big data ecosystem for secured smart healthcare monitoring and alerting system. Future Generation Computer Systems, 2018; 82: 375-87. DOI: 10.1016/j.future.2017.10.045
25- Wagner C, Gulácsi L, Takacs E, Outinen M. The implementation of quality management systems in hospitals: a comparison between three countries. BMC health services research, 2006; 6(1): 50. DOI: 10.1186/1472-6963-6-50