Portfolio Selection by Means of Artificial Bee Colony Algorithm and its Comparison with Genetic Algorithm and Ant Colony Algorithm
Subject Areas : Financial Knowledge of Securities AnalysisMahmoud Rahmani 1 , Maryam Khalili Araghi 2 * , Hashem Nikoomaram 3
1 - Department of Financial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 - Department of Financial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.
3 - Department of Financial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran
Keywords: Artificial Bee Colony, portfolio optimization, Genetic algorithm, Ant Colony Algorithm,
Abstract :
Investment decision making is one of the key issues in financial management. Investor might know about different asset types when facing with various options and the ways in which investors can incorporate them in devising a strategy is significant. Selecting the appropriate tools and techniques that can make optimum portfolio is one of the main objectives of the investment world. In this study it is tried to optimize the decision making in stock selection or optimization of portfolio by means of artificial colony of honeybee algorithm. And to determine the effectiveness of the algorithm, Sharp criteria algorithm, the trainer criteria and its downside risk were calculated and compared with the portfolio made up of genetic and ant colony algorithms .The sample consisted of active firms listed in the Tehran Stock Exchange from 2005 to 2015. The sample was selected by the systematic removal method. The findings show that Sharp criteria algorithm formed by the artificial bee colony algorithm functions better than the genetic and ant colony algorithms in terms of portfolio formation .However, the trainer's criteria and downside risk of the stock portfolio formed through the artificial bee colony algorithm shows the optimum function, this difference is not statistically significant.
* ابزری محمد، کتابی ، سعیده و عباسی ، عباس (1384) بهینه سازی سرمایه گذاری با استفاده از روش برنامه ریزی خطی و ارائه یک مدل کاربردی ، مجله علوم اجتماعی و انسانی دانشگاه شیراز ، دوره بیست و دوم ، شماره 2.
* اسلامی بیدگلی، غلامرضا و طیبیثانی، احسان(1393). بهینه سازی سبدسرمایهگذاری براساس ارزش در معرض ریسک با استفاده از الگوریتم کلونی مورچگان، فصلنامه علمیپژوهشی دانش سرمایه گذاری، دوره3، شماره 1، صفحات 122-110.
* تقوی فرد، محمد تقی، منصوری، طاها و خوش طینت، محسن(1386) ، ارائه یک الگوریتم فرا ابتکاری جهت انتخاب سبد سهام با درنظرگرفتن محدودیت های عدد صحیح، فصلنامه پژوهش های اقتصادی، سال هفتم، شماره چهارم، ص69-49.
* راعی ، رضا (1378) ، طراحی مدل سرمایه گذاری مناسب در سبد سهام با استفاده از هوش مصنوعی (شبکه های عصبی)، به راهنمایی کارولوکس (پایان نامه دکتری) دانشگاه تهران.
* سینایی، حسنعلی و زمانی ، سعید (1393) ، تصمیم گیری برای انتخاب سبدسهام ؛ مقایسه الگوریتم های ژنتیک و زنبورعسل، پژوهشنامه مدیریت اجرایی ، سال ششم ، شماره یازدهم ، صص12-83 .
* فلاح شمس، میرحسین، عبدالهی، احمد و مقدسی، مطهره(1392) ، بررسی عملکرد معیارهای متفاوت ریسک در انتخاب و بهینه سازی سبد سهام ا استفاده از الگوریتم مورچگان در شرکت های پذیرفته شده در بورس اوراق بهادار تهران، فصلنامه راهبرد و مدیریت مالی دانشکده علوم اجتماعی و اقتصادی دانشگاه شیراز ، سال اول، شماره دوم.
* کیانی هرچگانی، مانده و نبوی چاشمی، سیدعلی و معماریان، عرفان(1393). بهینهسازی سبدسهام براساس حداقل سطح پذیرش ریسک کل و اجزای آن با استفاده از الگوریتم ژنتیک، فصلنامه علمیپژوهشی دانش سرمایهگذاری، دوره3، شماره 11، صفحات 164-125.
* محمدی استخری، نازنین(1385)، انتخاب یک سبد سهام از بین شرکت های پذیرفته شده در بورس اوراق بهادار تهران با استفاده از مدل بهینه سازی الگوریتم ژنتیک پایان نامه کارشناسی ارشد، دانشکده مدیریت دانشگاه تهران.
* مولایی، محمدعلی، طالبی، آرش (1389) ، انتخاب و بهینه سازی سبد سهام با استفاده از روش های فرا ابتکاری و مقایسه آن با سبد های تشکیلی خبرگان و تازه کارها در بورس اوراق بهادار تهران، پایان نامه کارشناسی ارشد، دانشگاه صنعتی شاهرود.
* Akay B, karaboga D (2010) A Modified artificial Bee colony algorithm for real- parameter optimization ,Infsci . doi : 10.1016/j.ins.2010.07.015.
* Alavi garehbagh .A ,Bakhshi. R,(2007). survey of the common structures of genetic Algorithm, electrical Engineering conference; Tehran , Iran.
* Aouni, B.(2009). multi-attribute portfolio selection: new perspectives. IN FOR , 47(1), 1-4.
* Arnone, S. Loraschi, A . Tettamanzi, A.(1993) "A genetic approach to portfolio selection " , Neural Network World , vol. 6, No . 93, pp.597- 604.
* Chan,T.j.at al (2000), “heuristic for cardinality constrained portfolio optimization. Computers and operation research, vol,27, pp, 1271-1302.
* Chang.J.J, Vang.S.C, chang.k.j(2009). Portfolio optimization problems in different risk measure using gentic algorithm, Expres system with application, pp:152-163.
* Chen, w.(2015). Artificial bee colony algorithm constrained possibilistic portfolio optimization problem, physica,pp.125-139.
* Chu SC , Huang HC , Roddick J, pan JS (2011) overview of algorithms for swarm intelligence. in :Jedrzejowicz P, Nguyen N, Hoang K (eds). computational collective intelligence. Technologies and applications. Lecture notes in computer science ,vol 6922, springer, Berlin, pp 28-41
* Coloni, A. Dorigo.M.and Maniezzo, V.(1991), Distributed optimization by ant colony, in proceeding of europen conference on Prtifical life (ecsla1). Elsevier publishing, Amesterdam.
* Deng, Yi .(2002). Genetic Algorithm for Financial portfolio selection . Master`s Thesis, university of science & Technology Beijing, china.
* Dorigo,M. stutzle.T.(2004), Ant colony optimization, mh press, Cambridge.
* Eiben,A.E,Smit, E.(2003), interoduction to Evolutionary, springer.
* Fabozzi , F. etal(2005), robust portfolio optimization and management” john willy 8 sons, inc.
* Fernandez,A . Gomez, S .(2007)," portfolio selection using neural networks", computers and operations research, vol. 34. No .4, pp.1177-1191.
* Fieldsend, J. E. Matatko, J. Peng, M. (2004). “cardinality constrained portfolio optimization” in proceedings of the intelligent data engineering and automated learning on computer science, 2, pp. 788-793.
* Hanson,p . Riberio,C.(2009), Essays and surveys on meta heuristics kluwer academic publishes, Boston
* Hoolland, J.H (1975), Adaptation in natural and artificial systems, university of mcichigan press, ann arbor, ml..
* Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report. Computer Engineering Department , Engineering Faculty, Erciyes University.
* Karaboga D, AkayB(2009) A comparative study of artificial bee colony algorithm. Appl Math comput 214(1): 108-132.
* Karaboga D, Basturk B(2007) on the performance of Artificial bee colony(abc) algorithm, Appl soft comput 8(1):687-697.
* Karaboga, D. GorkemLi, B(2014). A quick Artificial Bee colony (qABC) algorithm and its performance on optimization problems .Appl. Soft compact .23, 227-238.
* KarabogaD , Akay B(2010) proportional – integral-derivative controller design by using artificial bee colony, harmony search, and the bees algorithms . procinst MechEng Part I-J Syst Control Eng 224(17) :869 -883.
* KarabogaD ,Basturk B(2007) Artificial bee colony(abc) optimization algorithm for solving constrained optimization problems. In : proceeding of the 12th international fuzzy systems association world congress on foundations of fuzzy logic and soft computing. Springer , Berlin, IFSA, 07,pp,789-798.
* KarabogaD,Akay B(2007) Artificial bee colony (abc) algorithm on training artificial neural networks. In :2007 IEEE 15th signal processing and communications applications , vols 1-3, IEEE , pp 818-821.
* Lin cj, lee cy(2009) An efficient artificial bee colony algorithm for 3d protein folding simulation. In: 17th national conference on fuzzy theory and its applications, pp 705-710
* Lin,c.c., liu,T.Y. (2007) “genetic algorithms for portfolio selection problems with minimum transaction lost”, European journal of operational research ,o.r. Applications.
* Mala DJ, kamalapriya M, shobana R, Mohan V (2009)A non-pheromone based intelligent swarm optimization technique in software test suit optimization . In :IAMA:2009 international conference on intelligent agent and multi – agent systems , IEEE Madras section ; IEEE computer society m Madras chapter ; Computer society of india Div II ; Council of science & industrial Research ;Govtindia, Department of information Technology , pp 188-192.
* Mala DJ,Mohan V, kamalapriya M(2010) Automated software test optimization framework – an artificial bee colony optimization –based approach . IET soft w 4(5) :334-348
* Markowitz, H. (1952) " portfolio selection ". the journal of Finance, vol . 7, No.1,pp.77-91.
* Markowitz, H. (1959) "portfolio " selection : Efficient diversification of investments" , John wiley& sons , New York.
* Raei,R. Bahrani Jahromi,B . Kamalzadeh.s.(2014), Portfolio optimization problem by Means og Artificial Bee Colony Algorithm, considering vailuscritiz. Internationall of compute Appli cations,Vol 103, No, 110 PP:159-172.
* Ruiz,V. Daz-parra,O (2011) Similarities between meta-heuristics algorithms and the science of life. Cent Eur J Oper Res 19: 445-466.
* Tollo, G. 8 Roli, A. (2008), Meta heuristics for the Portfolio selection Problem. International Jorurnal of operation Research 15,13-35.
* Tuba.M, Bacanin.N.(2014). “Artificial bee colony algorithm hybridzed with firefly algorithm for cardinality constrained mean- variance portfolio selection problem, applied g information science, no, 6,pp: 2831-2844.
* Wang, z. ouyang, R . and kong, x. (2013), “A hybrid artificial bee colony algorithm for port folio for portolio optimization problem, Journal of theoretical and applied information technology.
* Wang.z,liu.S, kong.x.(2012) Artificial bee colony Algorithm for portfolio optimization problem, international jornal of advancements in computing thchnology v,4.N,4.
* Wu D.Yu W. Yin Z (2011) Parameter estimation of rational models based on artificial bee colony algorithm. In: Proceedings of 2011 international conference on modeling, identification and control (ICMIC),pp 219-224.
Yang.x.s. (2005),“Engineering optimizations via Nature Inspired virtual Bee Algorithms”, springer- verlog: 317-323
_||_