Designing a Model for Social Trading Platforms in Irans Capital Market
Subject Areas :
Financial Knowledge of Securities Analysis
shahin ahmadi
1
,
Alireza Heidarzadeh Hanzaei
2
*
,
hamidreza kordlooei
3
,
Mahdi Madanchi Zaj
4
,
Shadi Shahverdiani
5
1 - PhD. Student in Financial Engineering, Department of Financial Management, Faculty of Management and Economy, Sciences and Research Branch, Islamic Azad University, Tehran, Iran.
2 - Assistant Prof. Department of Financial Management, Tehran North Branch, Islamic Azad University, Tehran, Iran, Corresponding Author
3 - Associate prof, Finance department, Islamic Azad University, Eslamshahr Branch, Tehran, Iran
4 - Assistant Prof. Department of Financial Management, Electronic Campus, Islamic Azad University Tehran, Iran.
5 - Assistant Prof. Department of Financial management,Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
Received: 2022-04-25
Accepted : 2022-07-11
Published : 2022-08-23
Keywords:
Abstract :
With developments in Iranian Capital Markets and the influence of Social Networks, the need to a tailored social platform for Iranian capital market seems inevitable. The purpose of the study is to design a quantitative model for social trading platform based on rating of dimensions and categories. The research was performed as a descriptive-survey, and considering the type of data, it was a mixed research and ranked the dimensions and criterions of the social trading platforms in Iranian Capital Markets. Based on Theoretical Matrix from previous surveys, the research was performed using descriptive and inferential statistics and a quantitative approach based on factor analysis of 380 questionnaires collected from investment, financing, VC and other expert parties and the reliability and validity of the model were tested using structural equations through smart PLS. The dimensions were ranked using structural equations and the criterions were ranked using Friedman rank analysis and confirmatory factor analysis. The highest estimated path coefficient reveals the highest ranks of dimensions. Statistical analysis of questionnaires regarding 11 main dimensions resulted on the following ranks (on the scale from most to less important) as follows: 1) information and trading transparency, 2) the interaction of money market and securities market, 3) training and investor education and reducing herd behavior, 4) stock analysis and returns, 5) the characteristics of social network, 6) owners’ equity and financial statements, 7) risk management, 8) inventory management systems, 9) financial and market ratios, 10) competitiveness ability, and 11) technologic characteristics.It should be noticed that the structural equation modeling results in better ratings for main dimensions, but for the rating of the criterions, one sample T test and Factor analysis end in best results. It could be concluded that dimensions like the information and trading transparency, interaction of money and securities market, and training and investor education have attained the highest ranks and dimensions as financial ratios, competitive abilities, and technologic characteristics has the lowest ranks. It should be considered that these results could be useful in the process of product development for developers and venture capitalists working on social trading platforms.
References:
اسلامی بیدگلی، غلام رضا و حمیدرضا کردلویی (1389). مالی رفتاری، مرحله گذر از مالی استاندارد تا نوروفاینانس، فصلنامهی علمی - پژوهشی مهندسی مالی و مدیریت پرتفوی، سال اول، شمارهی اول، صص 36-19.
اسلامی مفیدآبادی, حسین, رهنمای رود پشتی, فریدون, وکیلی فرد, حمیدرضا, نیکومرام, هاشم, طبیبی, سیدجمالالدین. (1398). طراحی الگوی آمیختۀ تصمیمات مالی در راستای توسعهی بازارهای مالی ایران (مورد مطالعه: بازار سرمایه ایران). دانش مالی تحلیل اوراق بهادار, 12(43), 1-39.
بدری، احمد، گودرزی، ندا. (1392). مالی رفتاری، سوگیری نماگری و متغیرهای بینادی حسابداری: شواهدی از بورس اوراق بهادار تهران. مطالعات تجربی حسابداری مالی, 11(43), 57-88.
لاری سمنانی، بهروز، دهخدا، اکرم. (1399). بررسی تأثیر روحیه سرمایهگذاران بر دامهای مالی رفتاری در بورس اوراق بهادار تهران. نشریه چشم انداز مدیریت مالی, 10(30), 143-162.
نیکو، سیده فرخ، شمس، شهاب الدین، صیقلی، محسن. (1399). مدلسازی انتخاب سبد بهینه سهام بر مبنای ارزیابی ریسک و رویکرد مالی رفتاری (حسابداری ذهنی) در بورس اوراق بهادار تهران. نشریه چشم انداز مدیریت مالی, 10(31), 75-101.
Allen, Franklin and Haas, Marlene and Nowak, Eric and Pirovano, Matteo and Tengulov, Angel, Squeezing Shorts Through Social Media Platforms (March 10, 2021). Swiss Finance Institute Research Paper No. 21-31, Available at SSRN: https://ssrn.com/abstract=3823151 or http://dx.doi.org/10.2139/ssrn.3823151
Ammann, Manuel. Schaub, Nic. Social interaction and investing: Evidence from an online social trading network. Working Paper, 2016
Antweiler, W. and M.Z. Frank, Is all that talk just noise? The information content of
internet stock message boards. The Journal of Finance, 2004. 59(3): p. 1259-1294.
Bernardo, I., R. Henriques, and V. Lobo. Social Market: Stock Market and Twitter Correlation. in International Conference on Intelligent Decision Technologies. 2017. Springer.
Bissattini, C. and K. Christodoulou, Web sentiment analysis for revealing public opinions, trends and making good financial decisions. 2013.
Bordino, I., et al., Web search queries can predict stock market volumes. PloS one, 2012. 7(7): p. e40014.
Breitmayer, Bastian and Massari, Filippo and Pelster, Matthias, Swarm Intelligence? Stock Opinions of the Crowd and Stock Returns (June 21, 2017). International Review of Economics and Finance 64, November 2019, 443-464. , Available at SSRN: https://ssrn.com/abstract=2787744 or http://dx.doi.org/10.2139/ssrn.2787744
Eldridge, Richard. How social media is shaping financial services, 2017. URL: https://www:huffingtonpost:com/richard-eldridge/how-social-media-isshapi_b_9043918:html. [Online; accessed 9-Oct-2018].
Doering, P.,Neumann, S.,& Paul, S. (2015). A primer on social trading networks: Institutional aspects and empirical evidence. Working paper. Germany: Ruhr-University Bochum
Dosenko, Anzhelika and Iuksel, Gaiana and Synowiec, Aleksandra and Pohrebniak, Inha and Shevchenko, Viktoriya, Communication Platforms: New Positions and Appointment (April 13, 2020). International Journal of Management (IJM), 11 (3), 2020, pp. 294–303, Available at SSRN: https://ssrn.com/abstract=3574568
Heimer, Rawley Z. Peer pressure: Social interaction and the disposition effect. The Review of Financial Studies, 29(11):3177–3209, 2016.
IOSCO, IOSCO Research Report on Financial Technologies (Fintech), 2017.
IOSCO, Report on the IOSCO Survey on Retail OTC Leveraged Products, 2016.
Irvine, P.J. and R.C. Giannini, The Impact of Divergence of Opinions About Earnings within a Social Network. 2012.
Kromidha, Endrit & Li, Matthew C., 2019. "Determinants of leadership in online social trading: A signaling theory perspective," Journal of Business Research, Elsevier, vol. 97(C), pages 184-197.
Lee, Woonyeol. & Ma , Qiang. Whom to follow on social trading services? a system to support discovering expert traders. In Digital Information Management (ICDIM), 2015 Tenth International Conference on, pages 188–193. IEEE, 2015.
Lugonov, A. and V. Panchenko. Characteristics and predictability of Twitter sentiment series. in 19th International COngress on Modelling and Simulation. 2011.
Malmendier, Ulrike. Shanthikumar, Devin. Do security analysts speak in two tongues? The Review of Financial Studies, 27(5):1287–1322, 2014.
Mäschle, Oliver. Which information should entrepreneurs on german crowdinvestingplatforms disclose? Technical report, Thünen-Series of Applied Economic Theory, 2012.
Oliveira, N., P. Cortez, and N. Areal. On the predictability of stock market behavior using stocktwits sentiment and posting volume. in Portuguese Conference on Artificial Intelligence. 2013. Springer.
Oksanen, Atte and Mantere, Eerik and Vuorinen, Ilkka and Savolainen, Iina, Gambling and Online Trading Emerging Risks of Real-Time Stock and Cryptocurrency Trading Platforms. Available at SSRN: https://ssrn.com/abstract=3909774 or http://dx.doi.org/10.2139/ssrn.3909774
Piñeiro-Chousa Juan, López-Cabarcos M Ángeles, Pérez-Pico Ada M, Vizcaíno-González Marcos, Analyzing Microblogging Activity and Stock Market Behavior through Artificial Neural Networks, Journal of Business Accounting and Finance Perspectives, 10.35995/jbafp2020010, 2, 2, (1), (2020).
Qiu, L., H. Rui, and A. Whinston, Social network-embedded prediction markets: The effects of information acquisition and communication on predictions. Decision Support Systems, 2013. 55(4): p. 978-987.
Rao, T. and S. Srivastava. Tweetsmart: Hedging in markets through twitter. in Emerging Applications of Information Technology (EAIT), 2012 Third International Conference on. 2012. IEEE.
Röder, Florian. Walter, Andreas. What drives investment flows into social trading portfolios? Working Paper, 2017.
Ruiz, E.J., et al. Correlating financial time series with micro-blogging activity. in Proceedings of the fifth ACM international conference on Web search and data mining. 2012. ACM.
Sprenger, T.O., et al., Tweets and trades: The information content of stock microblogs. European Financial Management, 2014. 20(5): p. 926-957.
Staer, Arsenio and Jacquot, Marcel, Social Media and Investor Returns: The Case of Reddit (November 12, 2018). Available at SSRN: https://ssrn.com/abstract=3282828
Tetlock, Paul C., Giving Content to Investor Sentiment: The Role of Media in the Stock Market. Journal of Finance, Forthcoming, Available at SSRN: https://ssrn.com/abstract=685145 or http://dx.doi.org/10.2139/ssrn.685145
Zhang, X., H. Fuehres, and P.A. Gloor, Predicting stock market indicators through twitter “I hope it is not as bad as I fear”. Procedia-Social and Behavioral Sciences, 2011. 26: p. 55-62.
Zhou , Zhijin. Xiao, Shengsheng. Chad Ho, Yi-Chun, and Tan, Yong. The persuasive and informative effects of information disclosure: Evidence from an online supply chain finance market. 2018.
_||_