Determination of Optimal Operation Strategy for CAES in Fluctuating-Hourly Electricity Market with High Renewable Wind Power Penetration (Case Study: Khorasan Regional Electricity Co.)
Subject Areas : environmental managementMahdi Ghaemi Asl 1 , Mostafa Salimifar 2 , Mostafa Rajabi Mashhadi 3 , Mohammad Hossien Mahdavi Adeli 4
1 - Assistant Professor, Economics and Islamic Banking Department, Faculty of Economics, Kharazmi University, Tehran, Iran * (Corresponding Author).
2 - Professor, Faculty of Economics Management & Economic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
3 - Assistant Professor, Faculty of Electrical Engineering, Sadjad University of technology, Mashhad, Iran.
4 - Professor, Faculty of Economics, Management & Economic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
Keywords: Simulation of Power System, Wind-Fossil Hybrid Production, Compressed Air Energy Storage , Optimal Strategy,
Abstract :
Background and Purpose: With influx of sustainable and renewable energy with high penetration into the production system, Compressed Air Energy Storage (CAES) could be used for creation of an acceptable adequate and smooth Electricity production system. CAES plants operate on electricity markets by storing energy when electricity prices are low and producing electricity when prices are high. An essential condition for the profitability of the CAES in hybrid systems is appropriate strategy for CAES operation about the sale and purchase of energy. This study aimed to determine optimal operating strategy for CAES systems fluctuating-hourly electricity market with high penetration of renewable wind power. Method: In this study, with simulation of production system of Khorasan Regional Electricity Company power plants which among all, the theoretical optimal strategy provides the highest net income for the storage unit. But since the market price of the upcoming hourly-fluctuating market is not pre-determined, two prognostic and historical practical-operational strategies have used for Setting up compressed air energy storage system. Findings: The results show that prognostic and historical practical-operational strategies, on average have 93% and 89% of theoretical optimal strategy s’ net income, respectively, in all six simulated capacities for compressed air energy storage system. Discussion and Counclusion: Based on the results, it is necessary to use power storage in order to increase grid stability and reliability of production in hybrid systems with high renewable power penetration; because a Black-Start must be ready in grid for Possible Black-Out situations which could provide load of grid in the least possible time. Use a CAES could be a great way that not only guarantees reliability and stability of grid in emergencies, but also is economically feasible and have operational suitable profit.
- Van Notten, W. F., Sleegersb, and A.M. and van Asselt, M.B.A., 2005, the future shocks: On discontinuity and scenario development; Technological Forecasting and Social Change, Volume 72, Issue 2, February 2005, Pages 175–194.
- Jaffe, A. B. and Stavins R. N. ,1994, The energy-efficiency gap, What does it mean?, Energy Policy 1994, 22 (10), pp 804-810
- Kanase Patil, A. B., R. P. Saini, M. P. Sharma, 2011, Sizing of integrated renewable energy system based on load profiles and reliability index for the state of Uttarakhand in India, Renewable Energy, vol. 36, pp. 2809-2821.
- Tanrioven, M., 2005, Reliability and cost-benefits of adding alternate power sources to an independent micro-grid community, Journal of Power Source, vol. 150, pp. 136–149.
- Lund, H., 2014, Advanced Energy Systems Analysis Computer Model, Documentation Version 11.4, Aalborg University, Denmark.
- ادریسیان. اشکان، سامانی. حمید و ناصح. مجیدرضا، 1391، الگوی جدید هایبرید هوای فشرده برای تولید پایدار در مزارع بادی، دومین همایش ملی انرژی باد و خورشید، هم اندیشان انرژی کیمیا، تهران.
- هادی. حمید و حقیقی خوشخو. رامین، 1393، طراحی مفهومی سیستم ذخیرهسازی انرژی هوای فشرده در مقیاس کوچک (Micro CAES) به همراه توربین بادی برای تامین برق یک واحد مسکونی، بیست و هشتمین کنفرانس بینالمللی برق، تهران.
- مرادی، شهرام و هنرمند، محمداسماعیل، 1388، بررسی استفاده از نیروگاههای بادی به همراه سیستم های ذخیره ساز انرژی، نخستین کنفرانس انرژی های تجدید پذیر و تولید پراکنده ایران، بیرجند، دانشگاه بیرجند.
- ارشادی عباس آباد. سالار، میرزایی ضیاپور. بهروز و عتابی. فریده، 1392، بهینه سازی عددی سیستم هیبریدی باد- دیسل- ذخیره انرشی هوای فشرده بر مبنای الگوریتم ژنتیک، اولین همایش سراسری محیط زیست، انرژی و پدافند زیستی، تهران، موسسه آموزش عالی مهر اروند، گروه ترویجی دوستداران محیط زیست.
- Celik, A. N., 2003, Techno-economic analysis of autonomous PV-wind hybrid energy systems using different sizing methods, Energy Conversion Management, vol. 44, pp. 1951–1968,
- Celik, A. N., 2002, Optimisation and techno-economic analysis of autonomous photovoltaic–wind hybrid energy systems in comparison to single photovoltaic and wind systems, Energy Conversion Management, vol. 43, pp. 2453–2468.
- Koutroulis, E., D. Kolokotsa, A. Potirakis, K. Kalaitzakis, 2006, Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms, Solar Energy, vol. 80, pp. 1072–88.
- Ekren, B. Y. and O. Ekren, 2009, Simulation based size optimization of a PV/wind hybrid energy conversion system with battery storage under various load and auxiliary energy conditions, Applied Energy, vol. 86, pp. 1387–94.
- Tascikaraoglu, A. M. Uzunoglu, B. Vural, 2012, The assessment of the contribution of short-term wind power predictions to the efficiency of stand-alone hybrid systems, Applied Energy, vol. 94, pp. 156-165.
- Takagi, M. and Y. Iwafune, K. Yamaji, H. Yamamoto, K. Okano, R. Hiwatari, T. Ikeya, 2013, Economic value of PV energy storage using batteries of battery-switch stations, IEEE Trans. on Sustainable Energy, vol. 4164-73.
- Abbaspour, M., Satkin, M., Mohammadi-Ivatloo, B., Hoseinzadeh Lotfi, F. and Noorollahi, Y., 2013, Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES), Renewable Energy, 51 (2013) pp53-59.
- شرکت برق منطقهای خراسان، 1391، گزارش اقدامات شرکت برق منطقهای خراسان در زمینه توسعه انرژیهای تجدیدپذیر، مشهد.
- شرکت مشاوره مدیریت آریانا، 1391، تدوین نقشه راه توسعه انرژیهای تجدیدپذیر صنعت برق خراسان، پژوهشگاه نیرو، مرکز رشد برق، واحد تحقیقات برق شرکت مشاوره مدیریت آریانا، تهران.
- Zelinka, I., 2001, Analytic programming by means of new evolutionary algorithms, Proceedings of 1st International Conference on New Trends in Physics’01, Brno, Czech Republic, pp. 210–214.
- Zelinka, I., 2002a, Analytic programming by means of soma algorithm, Proceedings of First International Conference on Intelligent Computing and Information Systems, Cairo, Egypt, pp. 148–154.
- Zelinka, I., 2002b, Analytic programming by means of soma algorithm, Proc. 8th International Conference on Soft Computing, VUT Brno, Mendel’02 Czech Republic, pp. 93–101.
- Zelinka, I., Oplatkova, Z. & Nolle, L., 2005, Analytic programming - symbolic regression by means of arbitrary evolutionary algorithms, In: Special Issue on Inteligent Systems of International Journal of Simulation, Systems, Science and Technology Vol.6 (No.9): 44–55.
- National Renewable Energy Laboratory, 2012, Cost and Performance Data for Power Generation Technologies, Golden, Colorado, United States, February 2012.
- Danish Energy Agency, 2012, Energinet.dk. Technology Data for Energy Plants, Danish Energy Agency.
- خلاصه تحولات اقتصادی کشور ،1391، بانک مرکزی جمهوری اسلامی ایران، تهران.
- رستمی. ثریا، حق پرست کاشانی. آرش و لاری. حمیدرضا، 1392، مطالعه و برآورد قیمت برق تولیدی از نیروگاه های بادی، خورشیدی و بیوگاز، نخستین کنفرانس ملی انجمن انرژی ایران، تهران، پژوهشگاه نیرو.
- طاهری فرد. علی و شهاب. سمیه، 1389، بررسی جنبه های فنی و اقتصادی تولید برق زمین گرمایی، اقتصاد انرژی، شماره 125.
- Danish Energy Agency, 2011, Assumptions for socio‐economic analysis on energy, Danish Energy Agency.
- Succar, S. and Williams, R.H., 2008, Compressed Air Energy Storage: Theory, Resources, And Applications for Wind Power, published for the Princeton Environmental Institute, April 2008.