A Review of Greywater Characteristics and Treatment Methods
Subject Areas : Water and Environmentmasoud rezaeei 1 * , Mohammad sarafzadeh 2
1 - دانشجوی دکتری مهندسی محیط زیست، کرسی یونسکو در بازیافت آب، دانشگاه تهران. (مسئول مکاتبات)
2 - رئیس کرسی یونسکو در بازیافت آب، دانشکده مهندسی شیمی، پردیس دانشکدههای فنی، دانشگاه تهران.
Keywords: Standard, grey water, water reuse, Microbiological Characteristics, Physicochemical Characteristics,
Abstract :
Introduction: Greywater (GW) is defined as wastewater from kitchen, bath and laundry excluding streams from toilets. GW can be classified as either low-load GW (excluding kitchen and laundry) or high-load GW (including kitchen and/or laundry). In recent years many studies have been carried out on GW treatment. Method: This review provides information on the GW characteristics, existing guidelines for wastewater reuse and the present state of art in GW treatment as well as their advantages and limitations. Result: This article revealed that GW quality is highly variable and dependent on the source of production. Physical processes have been shown to achieve only a limited treatment of the GW, therefore the use of these methods alone is recommended in the low strength GW. The chemical treatments were reported to provide good removal of the suspended solids, pathogens and surfactants in the low strength grey water but could not efficiently remove the BOD. Biological processes achieved good general treatment of GW, but the nutrient imbalance of GW limits the performance of these systems. Conclusion: However, the combination of aerobic biological process with physical pretreatment and disinfection is recommended in the high strength GW as the most economical solution.
1. Raso, J. (2013). Updated Report on Wastewater Reuse in the European Union. European Commission: Brussels, Belgium.
2. Ghaitidak, D. M., & Yadav, K. D. (2013). Characteristics and treatment of greywater—A review. Environmental Science and Pollution Research, 20(5), 2795-2809.
3. Kulabako, N. R., Ssonko, N. K. M., & Kinobe, J. (2011). Greywater Characteristics and Reuse in Tower Gardens in Peri-Urban Areas- Experiences of Kawaala, Kampala, Uganda. Open Environmental Engineering Journal, 4, 147-154.
4. Jefferson, B., Palmer, A., Jeffrey, P., Stuetz, R., & Judd, S. (2004). Grey water characterisation and its impact on the selection and operation of technologies for urban reuse. Water Science & Technology, 50(2), 157-164.
5. Li, F., Behrendt, J., Wichmann, K., & Otterpohl, R. (2008). Resources and nutrients oriented greywater treatment for non-potable reuses. Water Science and Technology, 57(12), 1901-1908.
6. Li, F., Wichmann, K., & Otterpohl, R. (2009). Review of the technological approaches for grey water treatment and reuses. Science of the Total Environment, 407(11), 3439-3449.
7. Boyjoo, Y., Pareek, V. K., & Ang, M. (2013). A review of greywater characteristics and treatment processes. Water Science & Technology, 67(7), 1403-1424.
8. World Health Organization. (2006). Guidelines for the Safe Use of Wastewater, Excreta and Greywater: Policy and regulatory aspects (Vol. 1). World Health Organization.
9. Christova-Boal, D., Eden, R. E., & McFarlane, S. (1996). An investigation into greywater reuse for urban residential properties. Desalination, 106(1), 391-397.
10. Naturvårdsverket. (1995). Vad innehåller avlopp från hushåll? Näring och metaller i urin och fekalier samt i disk-, tvätt-, bad- & duschvatten. (What does household wastewater contain? Nutrients and metals in urine, faeces and dish-, laundry and showerwater). Naturvårdsverket (Swedish EPA). Rapport 4425.
11. Casanova, L. M., Gerba, C. P. & Karpiscak, M. (2001). Chemical and microbial characterization of graywater. J Environ Sci Health, A36(4), 395-401. Christova-Boal, D., Eden, R. E. & McFarlane, S. (1996). An investigation into greywater reuse for urban residential properties. Desal, 106(1-3), 391-7.
12. Birks, R., Colbourne, J., Hills, S., & Hobson, R. (2004). Microbiological water quality in a large in-building, water recycling facility. Water Science & Technology, 50(2), 165-172.
13. 12-Eriksson, E., Auffarth, K., Eilersen, A. M., Henze, M., & Ledin, A. (2003). Household chemicals and personal care products as sources for xenobiotic organic compounds in grey wastewater. Water sa, 29(2), 135-146.
14. Winward, G. P., Avery, L. M., Frazer-Williams, R., Pidou, M., Jeffrey, P., Stephenson, T., & Jefferson, B. (2008). A study of the microbial quality of grey water and an evaluation of treatment technologies for reuse. Ecological engineering, 32(2), 187-197.
15. Misra, R. K., Patel, J. H. & Baxi, V. R 2010 Reuse potential of laundry greywater for irrigation based on growth, water and nutrient use of tomato. Journal of Hydrology 386 (1^), 95-102.
16. Dixon, A, Butler, D., Fewkes, A. & Robinson, M. 2000 Measurement and modelling of quality changes in stored untreated grey water. Urban Water 1 (4), 293-306.
17. Al-Jayyousi OR. Greywater reuse: towards sustainable water management. Desalination
18. 2003;156(1-3):181–92.
19. Bhattacharya, P., Sarkar, S., Ghosh, S., Majumdar, S., Mukhopadhyay, A., & Bandyopadhyay, S. (2013). Potential of ceramic microfiltration and ultrafiltration membranes for the treatment of gray water for an effective reuse. Desalination and water treatment, 51(22-24), 4323-4332.
20. Ramona, G., Green, M., Semiat, R., & Dosoretz, C. (2004). Low strength graywater characterization and treatmentby direct membrane filtration.Desalination, 170(3), 241-250.
21. Ghunmi, L. A., Zeeman, G., Fayyad, M., & van Lier, J. B. (2011). Grey water treatment systems: A review. Critical reviews in environmental science and technology, 41(7), 657-698.
22. Pidou, M., Avery, L., Stephenson, T., Jeffrey, P., Parsons, S. A., Liu, S., ... & Jefferson, B. (2008). Chemical solutions for greywater recycling. Chemosphere,71(1), 147-155.
23. Hernández-Leal, L., Temmink, H., Zeeman, G., & Buisman, C. J. N. (2011). Removal of micropollutants from aerobically treated grey water via ozone and activated carbon. Water Research, 45(9), 2887-2896.
24. Gulyas, H., Choromanski, P., Furmanska, M., Muelling, N., & Otterpohl, R. (2007, November). Photocatalytic oxidation of biologically treated greywater in the presence of powdered activated carbon. In International Conference on Sustainable Sanitation, Food and Water Security for Latin America, Fortaleza, Brazil.
25. Nolde, E. (2000). Greywater reuse systems for toilet flushing in multi-storey buildings–over ten years experience in Berlin. Urban water, 1(4), 275-284.
26. Ernst, M., Sperlich, A., Zheng, X., Gan, Y., Hu, J., Zhao, X., ... & Jekel, M. (2007). An integrated wastewater treatment and reuse concept for the Olympic Park 2008, Beijing. Desalination, 202(1), 293-301.
27. Maeda M, Nakada K, Kawamoto K, Ikeda M. Area-wide use of reclaimed water in Tokyo,
28. Japan. Water Sci Technol 1996;33(10-11):51–7.
29. Moslemi Zadeh, S. (2013). Sustainability evaluation of shared greywater recycling in urban mixed-use regeneration areas (Doctoral dissertation, University of Birmingham).
30. U.S. Environmental Protection Agency. (2004). Guidelines for water reuse. U.S. Environmental Protection Agency Report No. EPA/625/R-04/108/September- 2004.
31. Baban, A., Hocaoglu, S. M., Atasoy, E. A., Gunes, K., Ayaz, S., & Regelsberger, M. (2010). Grey water treatment and reuse by using RBC: A kinetic approach. Desalination and water treatment, 23(1-3), 89-94.
32. Hernandez, L., Zeeman, G., Temmink, H., Marques, A., & Buisman, C. (2008). Comparison of three systems for biological grey water treatment. In Proc. IWA conference on Sanitation challenges, Wageningen, Netherlands, May (pp. 19-22).
33. Hernández Leal, L., Temmink, H., Zeeman, G., & Buisman, C. J. (2010). Comparison of three systems for biological greywater treatment. Water, 2(2), 155-169.
34. Smith, E., & Bani-Melhem, K. (2012). Grey water characterization and treatment for reuse in an arid environment. Water Science and Technology,66(1), 72.
35. Bani-Melhem, K., Al-Qodah, Z., Al-Shannag, M., Qasaimeh, A., Qtaishat, M. R., & Alkasrawi, M. (2015). On the performance of real grey water treatment using a submerged membrane bioreactor system. Journal of Membrane Science,476, 40-49.
36. Bani-Melhem, K., & Smith, E. (2012). Grey water treatment by a continuous process of an electrocoagulation unit and a submerged membrane bioreactor system. Chemical Engineering Journal, 198, 201-210.
37. Merz C, Scheumann R, Hamouri BE, Kraume M. Membrane bioreactor technology for the treatment of greywater from a sports and leisure club. Desalination 2007;215 (1-3):37–43.
38. Santasmasas, C., Rovira, M., Clarens, F., & Valderrama, C. (2013). Grey water reclamation by decentralized MBR prototype. Resources, Conservation and Recycling, 72, 102-107.
39. Katukiza, A. Y., Ronteltap, M., Niwagaba, C. B., Kansiime, F., & Lens, P. N. L. (2014). Grey water treatment in urban slums by a filtration system: Optimisation of the filtration medium. Journal of environmental management, 146, 131-141.
40. Friedler, E., Kovalio, R., & Ben-Zvi, A. (2006). Comparative study of the microbial quality of greywater treated by three on-site treatment systems.Environmental technology, 27(6), 653-663.
41. Sostar-Turk S, Petrinic I, Simonic M. Laundry wastewater treatment using coagulation
42. and membrane filatration. Resour Conserv Recycl 2005;44(2):185–96.
43. Assayed, A., Chenoweth, J., & Pedley, S. (2015). Assessing the efficiency of an innovative method for onsite greywater treatment: Drawer compacted sand filter–A case study in Jordan. Ecological Engineering, 81, 525-533.
44. Gross A, Shmueli O, Ronen Z, Raveh E. Recycled vertical flow constructed wetland (RVFCW) — a novel method of recycling greywater for irrigation in small communities. Chemosphere 2007;66(5):916–23.
45. Frazer-Williams, R., Avery, L., Winward, G., Jeffrey, P., Shirley-Smith, C., Liu, S., ... & Jefferson, B. (2008). Constructed wetlands for urban grey water recycling. International Journal of Environment and Pollution, 33(1), 93-109.
46. Grčić, I., Vrsaljko, D., Katančić, Z., & Papić, S. (2015). Purification of household greywater loaded with hair colorants by solar photocatalysis using TiO 2-coated textile fibers coupled flocculation with chitosan. Journal of Water Process Engineering, 5, 15-27.
47. Parsons, S. A., Bedel, C., & Jefferson, B. (2000). Chemical vs. biological treatment of domestic greywater. In Proceedings of the 9th International Gothenburg Symposium on Chemical Treatment, Istanbul.
48. Lin C-J, Lo S-L, Kuo C-Y, Wu C-H. Pilot-scale electrocoagulation with bipolar aluminium electrodes for on-site domestic greywater reuse. J Environ Eng 2005:491–5 March.
49. 45-Pidou, M., Avery, L., Stephenson, T., Jeffrey, P., Parsons, S. A., Liu, S., ... & Jefferson, B. (2008). Chemical solutions for greywater recycling. Chemosphere,71(1), 147-155.
50. Dalahmeh, S. S., Assayed, M., & Suleiman, W. T. (2009). Themes of stakeholder participation in greywater management in rural communities in Jordan. Desalination, 243(1), 159-169.
51. Gabarró, J., Batchellí, L., Balaguer, M. D., Puig, S., & Colprim, J. (2013). Grey water treatment at a sports centre for reuse in irrigation: A case study.Environmental technology, 34(11), 1385-1392.
52. Elmitwalli, T. A., & Otterpohl, R. (2007). Anaerobic biodegradability and treatment of grey water in upflow anaerobic sludge blanket (UASB) reactor.Water Research, 41(6), 1379-1387.
53. Zeeman, G., Kujawa, K., Mes, T. D., Hernandez, L., Graaff, M. D., Abu-Ghunmi, L., ... & Lettinga, G. (2008). Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste (water). Water Science and Technology, 57(8), 1207-1212.
54. Lazarova V, Hills S, Birks R. Using recycled water for non-potable, urban uses: a review with particular reference to toilet flushing.Water Sci TechnolWater supply 2003;3 (4):69–77.
55. Dalahmeh, S. S., Pell, M., Vinnerås, B., Hylander, L. D., Öborn, I., & Jönsson, H. (2012). Efficiency of bark, activated charcoal, foam and sand filters in reducing pollutants from greywater. Water, Air, & Soil Pollution, 223(7), 3657-3671.
56. Elmitwalli, T. A., Shalabi, M., Wendland, C., & Otterpohl, R. (2007). Grey water treatment in UASB reactor at ambient temperature. Water science and technology, 55(7), 173-180.
57. Lamine, M., Bousselmi, L., & Ghrabi, A. (2007). Biological treatment of grey water using sequencing batch reactor. Desalination, 215(1), 127-132.
58. Jamrah, A., Al‐Futaisi, A., Ahmed, M., Prathapar, S., Al‐Harrasi, A., & Al‐Abri, A. (2008). Biological treatment of greywater using sequencing batch reactor technology. International Journal of Environmental Studies, 65(1), 71-85.
59. Katukiza, A. Y., Ronteltap, M., Niwagaba, C. B., Kansiime, F., & Lens, P. N. L. (2014). A two-step crushed lava rock filter unit for grey water treatment at household level in an urban slum. Journal of environmental management,133, 258-267.
60. Assayed, A., Chenoweth, J., & Pedley, S. (2014). Drawer compacted sand filter: a new and innovative method for on-site grey water treatment.Environmental technology, 35(19), 2435-2446.
61. Laaffat, J., Ouazzani, N., & Mandi, L. (2015). The evaluation of potential purification of a horizontal subsurface flow constructed wetland treating greywater in semi-arid environment. Process Safety and Environmental Protection, 95, 86-92.
62. Avery, L. M., Frazer-Williams, R. A., Winward, G., Shirley-Smith, C., Liu, S., Memon, F. A., & Jefferson, B. (2007). Constructed wetlands for grey water treatment. Ecohydrology & Hydrobiology, 7(3), 191-200.
63. Li, F., Behrendt, J., Wichmann, K., & Otterpohl, R. (2008). Resources and nutrients oriented greywater treatment for non-potable reuses. Water Science and Technology, 57(12), 1901-1908.
64. Li, F., Wichmann, K., & Otterpohl, R. (2009). Review of the technological approaches for grey water treatment and reuses. Science of the Total Environment, 407(11), 3439-3449.
65. J.C. Lee,J. S.Kim,I .J.Kang,M.H.Cho, P.K.Park,C.H.Lee,Potentialand limitations of alum or zeolite addition to improve the performance of a submerged membrane bioreactor ,Water Sci. Technol. 43 (2001) 59–66.
_||_
1. Raso, J. (2013). Updated Report on Wastewater Reuse in the European Union. European Commission: Brussels, Belgium.
2. Ghaitidak, D. M., & Yadav, K. D. (2013). Characteristics and treatment of greywater—A review. Environmental Science and Pollution Research, 20(5), 2795-2809.
3. Kulabako, N. R., Ssonko, N. K. M., & Kinobe, J. (2011). Greywater Characteristics and Reuse in Tower Gardens in Peri-Urban Areas- Experiences of Kawaala, Kampala, Uganda. Open Environmental Engineering Journal, 4, 147-154.
4. Jefferson, B., Palmer, A., Jeffrey, P., Stuetz, R., & Judd, S. (2004). Grey water characterisation and its impact on the selection and operation of technologies for urban reuse. Water Science & Technology, 50(2), 157-164.
5. Li, F., Behrendt, J., Wichmann, K., & Otterpohl, R. (2008). Resources and nutrients oriented greywater treatment for non-potable reuses. Water Science and Technology, 57(12), 1901-1908.
6. Li, F., Wichmann, K., & Otterpohl, R. (2009). Review of the technological approaches for grey water treatment and reuses. Science of the Total Environment, 407(11), 3439-3449.
7. Boyjoo, Y., Pareek, V. K., & Ang, M. (2013). A review of greywater characteristics and treatment processes. Water Science & Technology, 67(7), 1403-1424.
8. World Health Organization. (2006). Guidelines for the Safe Use of Wastewater, Excreta and Greywater: Policy and regulatory aspects (Vol. 1). World Health Organization.
9. Christova-Boal, D., Eden, R. E., & McFarlane, S. (1996). An investigation into greywater reuse for urban residential properties. Desalination, 106(1), 391-397.
10. Naturvårdsverket. (1995). Vad innehåller avlopp från hushåll? Näring och metaller i urin och fekalier samt i disk-, tvätt-, bad- & duschvatten. (What does household wastewater contain? Nutrients and metals in urine, faeces and dish-, laundry and showerwater). Naturvårdsverket (Swedish EPA). Rapport 4425.
11. Casanova, L. M., Gerba, C. P. & Karpiscak, M. (2001). Chemical and microbial characterization of graywater. J Environ Sci Health, A36(4), 395-401. Christova-Boal, D., Eden, R. E. & McFarlane, S. (1996). An investigation into greywater reuse for urban residential properties. Desal, 106(1-3), 391-7.
12. Birks, R., Colbourne, J., Hills, S., & Hobson, R. (2004). Microbiological water quality in a large in-building, water recycling facility. Water Science & Technology, 50(2), 165-172.
13. 12-Eriksson, E., Auffarth, K., Eilersen, A. M., Henze, M., & Ledin, A. (2003). Household chemicals and personal care products as sources for xenobiotic organic compounds in grey wastewater. Water sa, 29(2), 135-146.
14. Winward, G. P., Avery, L. M., Frazer-Williams, R., Pidou, M., Jeffrey, P., Stephenson, T., & Jefferson, B. (2008). A study of the microbial quality of grey water and an evaluation of treatment technologies for reuse. Ecological engineering, 32(2), 187-197.
15. Misra, R. K., Patel, J. H. & Baxi, V. R 2010 Reuse potential of laundry greywater for irrigation based on growth, water and nutrient use of tomato. Journal of Hydrology 386 (1^), 95-102.
16. Dixon, A, Butler, D., Fewkes, A. & Robinson, M. 2000 Measurement and modelling of quality changes in stored untreated grey water. Urban Water 1 (4), 293-306.
17. Al-Jayyousi OR. Greywater reuse: towards sustainable water management. Desalination
18. 2003;156(1-3):181–92.
19. Bhattacharya, P., Sarkar, S., Ghosh, S., Majumdar, S., Mukhopadhyay, A., & Bandyopadhyay, S. (2013). Potential of ceramic microfiltration and ultrafiltration membranes for the treatment of gray water for an effective reuse. Desalination and water treatment, 51(22-24), 4323-4332.
20. Ramona, G., Green, M., Semiat, R., & Dosoretz, C. (2004). Low strength graywater characterization and treatmentby direct membrane filtration.Desalination, 170(3), 241-250.
21. Ghunmi, L. A., Zeeman, G., Fayyad, M., & van Lier, J. B. (2011). Grey water treatment systems: A review. Critical reviews in environmental science and technology, 41(7), 657-698.
22. Pidou, M., Avery, L., Stephenson, T., Jeffrey, P., Parsons, S. A., Liu, S., ... & Jefferson, B. (2008). Chemical solutions for greywater recycling. Chemosphere,71(1), 147-155.
23. Hernández-Leal, L., Temmink, H., Zeeman, G., & Buisman, C. J. N. (2011). Removal of micropollutants from aerobically treated grey water via ozone and activated carbon. Water Research, 45(9), 2887-2896.
24. Gulyas, H., Choromanski, P., Furmanska, M., Muelling, N., & Otterpohl, R. (2007, November). Photocatalytic oxidation of biologically treated greywater in the presence of powdered activated carbon. In International Conference on Sustainable Sanitation, Food and Water Security for Latin America, Fortaleza, Brazil.
25. Nolde, E. (2000). Greywater reuse systems for toilet flushing in multi-storey buildings–over ten years experience in Berlin. Urban water, 1(4), 275-284.
26. Ernst, M., Sperlich, A., Zheng, X., Gan, Y., Hu, J., Zhao, X., ... & Jekel, M. (2007). An integrated wastewater treatment and reuse concept for the Olympic Park 2008, Beijing. Desalination, 202(1), 293-301.
27. Maeda M, Nakada K, Kawamoto K, Ikeda M. Area-wide use of reclaimed water in Tokyo,
28. Japan. Water Sci Technol 1996;33(10-11):51–7.
29. Moslemi Zadeh, S. (2013). Sustainability evaluation of shared greywater recycling in urban mixed-use regeneration areas (Doctoral dissertation, University of Birmingham).
30. U.S. Environmental Protection Agency. (2004). Guidelines for water reuse. U.S. Environmental Protection Agency Report No. EPA/625/R-04/108/September- 2004.
31. Baban, A., Hocaoglu, S. M., Atasoy, E. A., Gunes, K., Ayaz, S., & Regelsberger, M. (2010). Grey water treatment and reuse by using RBC: A kinetic approach. Desalination and water treatment, 23(1-3), 89-94.
32. Hernandez, L., Zeeman, G., Temmink, H., Marques, A., & Buisman, C. (2008). Comparison of three systems for biological grey water treatment. In Proc. IWA conference on Sanitation challenges, Wageningen, Netherlands, May (pp. 19-22).
33. Hernández Leal, L., Temmink, H., Zeeman, G., & Buisman, C. J. (2010). Comparison of three systems for biological greywater treatment. Water, 2(2), 155-169.
34. Smith, E., & Bani-Melhem, K. (2012). Grey water characterization and treatment for reuse in an arid environment. Water Science and Technology,66(1), 72.
35. Bani-Melhem, K., Al-Qodah, Z., Al-Shannag, M., Qasaimeh, A., Qtaishat, M. R., & Alkasrawi, M. (2015). On the performance of real grey water treatment using a submerged membrane bioreactor system. Journal of Membrane Science,476, 40-49.
36. Bani-Melhem, K., & Smith, E. (2012). Grey water treatment by a continuous process of an electrocoagulation unit and a submerged membrane bioreactor system. Chemical Engineering Journal, 198, 201-210.
37. Merz C, Scheumann R, Hamouri BE, Kraume M. Membrane bioreactor technology for the treatment of greywater from a sports and leisure club. Desalination 2007;215 (1-3):37–43.
38. Santasmasas, C., Rovira, M., Clarens, F., & Valderrama, C. (2013). Grey water reclamation by decentralized MBR prototype. Resources, Conservation and Recycling, 72, 102-107.
39. Katukiza, A. Y., Ronteltap, M., Niwagaba, C. B., Kansiime, F., & Lens, P. N. L. (2014). Grey water treatment in urban slums by a filtration system: Optimisation of the filtration medium. Journal of environmental management, 146, 131-141.
40. Friedler, E., Kovalio, R., & Ben-Zvi, A. (2006). Comparative study of the microbial quality of greywater treated by three on-site treatment systems.Environmental technology, 27(6), 653-663.
41. Sostar-Turk S, Petrinic I, Simonic M. Laundry wastewater treatment using coagulation
42. and membrane filatration. Resour Conserv Recycl 2005;44(2):185–96.
43. Assayed, A., Chenoweth, J., & Pedley, S. (2015). Assessing the efficiency of an innovative method for onsite greywater treatment: Drawer compacted sand filter–A case study in Jordan. Ecological Engineering, 81, 525-533.
44. Gross A, Shmueli O, Ronen Z, Raveh E. Recycled vertical flow constructed wetland (RVFCW) — a novel method of recycling greywater for irrigation in small communities. Chemosphere 2007;66(5):916–23.
45. Frazer-Williams, R., Avery, L., Winward, G., Jeffrey, P., Shirley-Smith, C., Liu, S., ... & Jefferson, B. (2008). Constructed wetlands for urban grey water recycling. International Journal of Environment and Pollution, 33(1), 93-109.
46. Grčić, I., Vrsaljko, D., Katančić, Z., & Papić, S. (2015). Purification of household greywater loaded with hair colorants by solar photocatalysis using TiO 2-coated textile fibers coupled flocculation with chitosan. Journal of Water Process Engineering, 5, 15-27.
47. Parsons, S. A., Bedel, C., & Jefferson, B. (2000). Chemical vs. biological treatment of domestic greywater. In Proceedings of the 9th International Gothenburg Symposium on Chemical Treatment, Istanbul.
48. Lin C-J, Lo S-L, Kuo C-Y, Wu C-H. Pilot-scale electrocoagulation with bipolar aluminium electrodes for on-site domestic greywater reuse. J Environ Eng 2005:491–5 March.
49. 45-Pidou, M., Avery, L., Stephenson, T., Jeffrey, P., Parsons, S. A., Liu, S., ... & Jefferson, B. (2008). Chemical solutions for greywater recycling. Chemosphere,71(1), 147-155.
50. Dalahmeh, S. S., Assayed, M., & Suleiman, W. T. (2009). Themes of stakeholder participation in greywater management in rural communities in Jordan. Desalination, 243(1), 159-169.
51. Gabarró, J., Batchellí, L., Balaguer, M. D., Puig, S., & Colprim, J. (2013). Grey water treatment at a sports centre for reuse in irrigation: A case study.Environmental technology, 34(11), 1385-1392.
52. Elmitwalli, T. A., & Otterpohl, R. (2007). Anaerobic biodegradability and treatment of grey water in upflow anaerobic sludge blanket (UASB) reactor.Water Research, 41(6), 1379-1387.
53. Zeeman, G., Kujawa, K., Mes, T. D., Hernandez, L., Graaff, M. D., Abu-Ghunmi, L., ... & Lettinga, G. (2008). Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste (water). Water Science and Technology, 57(8), 1207-1212.
54. Lazarova V, Hills S, Birks R. Using recycled water for non-potable, urban uses: a review with particular reference to toilet flushing.Water Sci TechnolWater supply 2003;3 (4):69–77.
55. Dalahmeh, S. S., Pell, M., Vinnerås, B., Hylander, L. D., Öborn, I., & Jönsson, H. (2012). Efficiency of bark, activated charcoal, foam and sand filters in reducing pollutants from greywater. Water, Air, & Soil Pollution, 223(7), 3657-3671.
56. Elmitwalli, T. A., Shalabi, M., Wendland, C., & Otterpohl, R. (2007). Grey water treatment in UASB reactor at ambient temperature. Water science and technology, 55(7), 173-180.
57. Lamine, M., Bousselmi, L., & Ghrabi, A. (2007). Biological treatment of grey water using sequencing batch reactor. Desalination, 215(1), 127-132.
58. Jamrah, A., Al‐Futaisi, A., Ahmed, M., Prathapar, S., Al‐Harrasi, A., & Al‐Abri, A. (2008). Biological treatment of greywater using sequencing batch reactor technology. International Journal of Environmental Studies, 65(1), 71-85.
59. Katukiza, A. Y., Ronteltap, M., Niwagaba, C. B., Kansiime, F., & Lens, P. N. L. (2014). A two-step crushed lava rock filter unit for grey water treatment at household level in an urban slum. Journal of environmental management,133, 258-267.
60. Assayed, A., Chenoweth, J., & Pedley, S. (2014). Drawer compacted sand filter: a new and innovative method for on-site grey water treatment.Environmental technology, 35(19), 2435-2446.
61. Laaffat, J., Ouazzani, N., & Mandi, L. (2015). The evaluation of potential purification of a horizontal subsurface flow constructed wetland treating greywater in semi-arid environment. Process Safety and Environmental Protection, 95, 86-92.
62. Avery, L. M., Frazer-Williams, R. A., Winward, G., Shirley-Smith, C., Liu, S., Memon, F. A., & Jefferson, B. (2007). Constructed wetlands for grey water treatment. Ecohydrology & Hydrobiology, 7(3), 191-200.
63. Li, F., Behrendt, J., Wichmann, K., & Otterpohl, R. (2008). Resources and nutrients oriented greywater treatment for non-potable reuses. Water Science and Technology, 57(12), 1901-1908.
64. Li, F., Wichmann, K., & Otterpohl, R. (2009). Review of the technological approaches for grey water treatment and reuses. Science of the Total Environment, 407(11), 3439-3449.
65. J.C. Lee,J. S.Kim,I .J.Kang,M.H.Cho, P.K.Park,C.H.Lee,Potentialand limitations of alum or zeolite addition to improve the performance of a submerged membrane bioreactor ,Water Sci. Technol. 43 (2001) 59–66.