Improvement of Imperialist Colony Algorithm by Employment of Imperialist Learning Operator and Implementing in Travel Salesman Problem
Subject Areas : مدیریتHassan Haleh 1 , Daniyal Esmaeli Ali Abadi 2 *
1 - استادیار، دانشگاه آزاد اسلامی، واحد قزوین، گروه مهندسی صنایع، قزوین، ایران
2 - دانشجو دکتری، دانشگاه سابانجی، گروه مهندسی صنایع، استانبول، ترکیه (عهده دار مکاتبات
Keywords: Travel Salesman Problem, Imperialist Colony Algorithm, Meta-Heuristic Algorithm, TSPLIB,
Abstract :
This study tries to enhance imperialist colony algorithm (ICA) in the context of travel salesman problem (TSP). By adding new learning operator, imperialist learns form colonies that have suitable cost in which manner that improves solution of problems. We believe that controlled learning improvement is better than uncontrolled one. The efficiency of new operator represented with variety of instances from TSPLIB. We evaluate the approach on standard TSP test problems and show that it performs better, with respect to solution quality and computation time than ICA without new learning operator.