Assess Effect of Phosphorus Biologic Fertilizer to Improve Crop Production under Warm and Dry Climate Condition
Subject Areas : Journal of Crop Nutrition Science
1 - Expert of Jahad Agricultural Organization, Bavi, Khuzestan, Iran.
Keywords: Nutrition, Organic farming, Yield</i>, Symbiotic bacteria, <i>Microorganism,
Abstract :
Chemical fertilizers have several negative impacts on environment and sustainable agriculture. Therefore, bio fertilizers are recommended in these conditions and growth prompting bacteria uses as a replacement of chemical fertilizers. Symbiotic bacteria have positive role in the production of bio-fertilizers and hormones which play a significant role in regulating plant growth while mixing them with chemical fertilizers as a supplement the level and depth of the roots. This combination also increases the rate of water and nutrient absorbance which raise the rate of growth and photosynthesis. The inoculation of soil or crop with phosphate solubilizing/mineralizing microorganisms is therefore a promising strategy for the improvement of plant absorption of phosphorus and thereby reducing the use of chemical fertilizers that have a negative impact on the environment. This review has shown that phosphate-solubilizing microorganisms (PSM) have tremendous potential as Bio-fertilizers. Mobilizing soil inorganic phosphate and increasing its bioavailability for plant use by harnessing soil PSM promotes sustainable agriculture, improves the fertility of the soil, and hence increases crop productivity. The use of PSM as microbial inoculants is a new horizon for better plant productivity. PSM technology can contribute to low-input farming systems and a cleaner environment. However, there is need to develop PSB technologies specific to various regions and this should be communicated to farmers in a relatively short time. By using phosphate solubilizing microorganisms in crop root zone and soil, the capability of phosphate availability through insoluble phosphate resources will increase and the efficiency of phosphate fertilizers such as superphosphate will improve. Biological phosphorus fertilizers are good substitutes for phosphate chemical fertilizers. They contain two phosphate solubilizing bacteria which dissolve the soil phosphorus using two mechanisms of organic acid and phosphatase acid secretion.
Abd-Alrahman Rehab, A., M. M El-Hady .and A. M. Abdelghany. 2002. Effect of timing of first irrigation and application of zinc and manganese on growth and yield of faba bean (Vicia faba. L) Giza blanka cultivar. J. Agric. Res. 35: 53-72.
Abd El-Ghany, H. M. 2007. What production under water-limited sandy soil conditions using Bio-Organic Fertilizer Systems. Egypt. J. Agron. 29(1): 17-27.
Adesemoye, A. O. and J. W. Kloepper. 2009. Plant-microbes interactions in enhanced fertilizer use efficiency. Appl. Microbiol Biotechnol. 85: 1–12.
Alexandratos, N. 2003. World agriculture: Towards 2015-30. Cong. Global Food Security and Role of Sustainable Fertil. Rome. Italy.
Arif, M. S., S. M. Shahzad, T. Yasmeen, M. Riaz, M. Ashraf, M.A. Ashraf, M. S. Mubarik. and R. Kausar. 2017. Improving plant phosphorus (P) acquisition by phosphate-solubilizing bacteria. In: Essential Plant Nutrients. Springer. Cham. pp. 513–556.
Azziz, G., N. Bajsa, T. Haghjou, C. Taulé, A. Valverde. and J. Igual. 2012. Abundance, diversity and prospecting of culturable phosphate solubilizing bacteria on soils under crop–pasture rotations in a no-tillage regime in Uruguay. Appl. Soil Ecol. 61: 320-326. doi: 10.1016/j.apsoil.2011.10.004
Babalola, O. O. and B. R. Glick. 2012. Indigenous African agriculture and plant associated microbes: current practice and future transgenic prospects. Sci. Res. Essays. 7: 2431–2439.
Beyranvand, H., A. Farnia, Sh. Nakhjavan. and M. Shaban. 2013. Response of yield and yield components of maize (Zea mays L.) to different bio fertilizers. Intl. J. Adv. Biol. Biomedical Res. 1(9): 1068-1077.
Bhattacharyya, P. N. and D. K. Jha. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28: 1327–1350.
El-Gizawy, N. Kh. B. and S. A. S. Mehasen. 2009. Response of Faba Bean to Bio, Mineral Phosphorus Fertilizers and Foliar Application with Zinc. World App. Sci. J. 6(10): 1359-1365.
Emami, S., H. A. Alikhani, A. A. Pourbabaee, H. Etesami, B. Motasharezadeh. and F. Sarmadian. 2020. Consortium of endophyte and rhizosphere phosphate solubilizing bacteria improves phosphorous use efficiency in wheat cultivars in phosphorus deficient soils. Rhizosphere. 14: 100196.
Fedotova, L. S., A. V. Kravchenko. and A. N. Gavrilov. 2009. The importance of bacterial fertilizers in biological production of potato. Achievements of Sci. Tech. J. 3: 28-30.
Gad, N., M. R. Abdel-Moez. and H. Kandil. 2012. Influence of cobalt and mycorrhizae mediated phosphorus on plants growth and yield. J. Basic. Appl. Sci. Res. 2(11): 11942-11951.
Hamed, M. F. 2003. Faba bean productivity as affected by zinc, phosphorus fertilizer and phosphorein. Annal of Agric. Sci. 43(3): 1109-1119.
Jadhav, A.S, A. A. Shaikh, C. A. Nimbalkar. and A. Harinarayana. 1998. Synergistic effects of bacterial fertilizers in economizing nitrogen use in pearl millet. Millets Newsletter. 6: 14-15.
Kazemi, Sh., S. Galeshi, A. Ghanbar. and Gh. A. Kianoosh. 2005. The effect of planting date and seed inoculation with bacteria on yield and yield components of two soybean cultivars. Sci. Agric. Natural Res. 12(4): 20-26.
Liu, D. and J. W. Golden. 2002. hetL overexpression stimulates heterocyst formation in Anabaena sp. strain PCC 7120. J. Bacteriol. 184: 6873–6881.
Marzban, A., G. Ebrahimipour, M. Karkhane. and M. Teymouri. 2016. Metal resistant and phosphate solubilizing bacterium improves maize (Zea mays) growth and mitigates metal accumulation in plant. Biocatal. Agric. Biotechnol. 8: 13–17.
Mattos, B. B., I. E. Marriel, S. M. De Sousa, U. G. D. P. Lana, R. E. Schaffert, E. A. Gomes. and C. A. D. O. Paiva. 2020. Sorghum genotypes response to inoculation with phosphate solubilizing bacteria. Rev. Bras. Milho Sorgo. 19: 14.
Nouraki, F., M. AlaviFazel, A. Naderi, E. Panahpoor. and Sh. Lack. 2016. Effects of integrated management of bio and chemical fertilizers on yield of maize hybrids. J. Exp. Biol. Agri. Sci. 4(4): 421-426.
Pyone, A. P. 2021. Effect of phosphorus solubilizing bacteria on soil available phosphorus and growth and yield of sugarcane. Walailak J. Sci. Technol. 18: 1–9.
Qing-Fang, B, L. Ke-Jie, Zh. Bang-Xiao, L. Xi-Peng, Li. Hong-Zhe, J. Bing-Jie, D. Kai, Y. Xiao-Ru, L. Xian-Yong. and Zh.Yong-Guan. 2020. Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil. Sci. Total Environment. 703: 134977.
Ribaudo, C., J. I. Zaballa. and R. Golluscio. 2020. Effect of the phosphorus-solubilizing bacterium Enterobacter Ludwigii on barley growth promotion. Am. Sci. Res. J. Eng. Technol. Sci. 63(1): 144–157.
Rizvi, A., A. Zaidi, F. Ameen, B. Ahmed, M. D. AlKahtani. and M. S. Khan. 2020. Heavy metal induced stress on wheat: phytotoxicity and microbiological management. RSC Adv. 10(63): 38379–38403.
Rohaya, A., Z. Khurshid. and S. Nasreena. 2020. Genetically Modified Microbes as Biofertilizers. Bioremediation and Biotechnology. Vol. 4: 275-293. Springer Nature Pub. 10.1007/978-3-030-48690-7_13. In: Raimi et al. Cogent Food and Agriculture 2017.
Saleh, M., A. Sirousmehr. and E. Shirmohammadi. 2015. Effect of biological fertilizers on carbohydrate and chlorophyll content of forage sorghum. Int. J. Bio. Sci. 6(4): 157-164.
Sharma, S. B., R. Z. Sayyed, M. H. Trivedi. and T. A. Gobi. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer plus. 2: 587–600.
Somasegaran, P. and H. Springer. 1994. Carrier materials used in biofertilizer making. Nature. 6: 2–6.
Tahmasbi, D., R. Zarghami, A. V. Azghandi. and M. Chaichi. 2011. Effects of nano silver and nitroxin biofertilizer on yield and yield components of potato mini tubers. Intl. J. Agric. Biol. 13: 986–990.
Unknown Source A. Available in:
Unknown Source B. Available in:
https://www.fertilizerseurope.com/phosphorus-in-food-production/
Venkatash-Warlu, B. 2008. Role of bio-fertilizers in organic farming: Organic farming in rain fed agriculture, central institute for dry land agriculture. Hyderabad. Pak. pp: 85-95.
Walpola, B. C. and M. H. Yoon. 2012. Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: a review. Afr. J. Microbiol. Res. 6(37): 6600–6605.
Wani, P. A., M. S. Khan. and A. Zaidi. 2007. Co-inoculation of nitrogen fixing and phosphate solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agron. Hung. 55: 315–323.
Wu, S. C., Z. H. Caob, Z. G. Lib, K. C. Cheunga. and M. H. Wong. 2005. Effects of bio-fertilizer containing N-fixer, P and K solubilizes and AM fungi on maize growth: a greenhouse trial. Geoderma. J. 125: 155-166.
Yazdani, M., M. A. Bahmanyar, H. Pirdashti. and M. A. Esmaili. 2009. Effect of phosphate solubilization microorganisms and plant growth promoting rhizobacteria on yield and yield components of corn. Inter. J. Biol. Life Sci. 1: 2-10.
Yilmaz, S. 2008. Effects of increased phosphorus and densities on yield of vetch lines. Turk. J. Agric. 32: 49-56.
Youssef, M. M. A. and M. F. Eissa. 2014. Biofertilizers and their role in management of plant parasitic nematodes: a review. Biotechnol. Pharm. Res. 5: 1–6.
Zhang, L., X. Ding, S. Chen, X. He, F. Zhang. and G. Feng. 2014. Reducing carbon: phosphorus ratio can enhance microbial phytin mineralization and lessen competition with maize for phosphorus. J. Plant Interact. 9: 850–856.
Zhang, L., K. C. Loh, S. Sarvanantharajah, Y. Shen, Y. W. Tong, Ch. H. Wang. and Y. Dai. 2020. Recovery of Nitrogen and Phosphorus Nutrition from Anaerobic Digestate by Natural Superabsorbent Fiber-Based Adsorbent and Reusing as an Environmentally Friendly Slow-Release Fertilizer for Horticultural Plants. Waste Biomass Valor. 11: 5223–5237.
Zhao, K., P. Penttinen, X. Zhang, X. Ao, M. Liu. and X. Yu. 2014. Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiol. Res. 169: 76–82.
Zhu, F., L. Qu, X. Hong. and X. Sun. 2011. Isolation and characterization of a phosphate solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of yellow sea of China. Evid. Based Complement. Alternat. Med. 2011: 615032.
Zhu, H. J., L. F. Sun, Y. F. Zhang, X. L. Zhang. and J. J. Qiao. 2012. Conversion of spent mushroom substrate to biofertilizer using a stress-tolerant phosphate-solubilizing Pichia farinose FL7. Bioresour. Technol. 111: 410–416.