Study of the Adsorption Performance of a Cationic Dye onto a Moroccan Clay
Subject Areas :
Journal of Chemical Health Risks
Brahim Abbou
1
*
,
Imane Lebkiri
2
,
Hanae Ouaddari
3
,
lamya kadiri
4
,
abdelkarim ouass
5
,
Abdlhay Elamri
6
,
Jaouad Bensalah
7
,
Amar Habsaoui
8
,
Ahmed Lebkiri
9
,
El Housseine Rifi
10
1 - Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
2 - Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
3 - Laboratory of Materials, Membranes and Environment, Faculty of Sciences and Technologies of Mohammedia, Hassan II University, Casablanca, Morocco
4 - Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
5 - Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
6 - Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
7 - Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
8 - Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
9 - Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
10 - Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
Received: 2021-01-31
Accepted : 2021-11-27
Published : 2022-12-01
Keywords:
Thermodynamic,
Isotherm,
Methylene Blue,
kinetic,
Cationic dye,
Abstract :
The purpose of this study is to examine the adsorption process of a cationic dye, in this case Methylene Blue (MB), on Moroccan natural clay collected from Marrakech region. The influence of physicochemical parameters (contact time, pH, mass of the adsorbent, initial Methylene Blue concentration and temperature) on MB adsorption performance on clay was studied. Experimental results showed a remarkable and rapid elimination within the first twenty minutes of contact of the two phases. The adsorption kinetics of Methylene Blue was evaluated applying pseudo first and second order kinetic models. The kinetic study demonstrates that adsorption obeys the pseudo second order model. The adsorption process was determined by applying the Langmuir and Freundlich isotherms. The maximum adsorption capacity of the raw clay is about 32 mg g-1. The temperature effect on dye adsorption was also examined and thermodynamic parameters were calculated.
References:
Achour Y., Khouili M., Abderrafia H., Melliani S., Laamari M.R., El Haddad M., 2018. DFT Investigations and Experimental Studies for Competitive and Adsorptive Removal of Two Cationic Dyes onto an Eco-friendly Material from Aqueous Media. International Journal of Environmental Research. 12(6), 789-802.
Achour Y., Bahsis L., Ablouh E.-H., Yazid H., Laamari M.R., Haddad M. E., 2021. Insight into adsorption mechanism of Congo red dye onto Bombax Buonopozense bark Activated-carbon using Central composite design and DFT studies. Surfaces and Interfaces. 23, 100977.
P. Panneer S., Preethi S., Basakaralingam P., N.Thinakaran, Sivasamy A., Sivanesan S., 2008. Removal of rhodamine B from aqueous solution by adsorption onto sodium montmorillonite. Journal of Hazardous Materials. 155(1-2), 39-44.
Regti A., Laamari M.R., Stiriba S.E., El Haddad M., 2017. Use of response factorial design for process optimization of basic dye adsorption onto activated carbon derived from Persea species. Microchemical Journal. 130, 129-136.
Lebkiri I., Abbou B., Kadiri L., Ouass A., Essaadaoui Y., Rifi E. H., Lebkiri A., 2019. Removal of methylene blue dye from aqueous solution using a superabsorbant hydrogel the polyacrylamide: isotherms and kinetic studies. Mediterranean Journal of Chemistry. 9(5), 337-345.
Weng C.H., Pan Y.F., 2007. Adsorption of a cationic dye (methylene blue) onto spent activated clay. Journal of Hazardous Materials. 144 (1-2), 355-362.
Robinson T., Marchant R., Nigam P., 2001. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology. 77(3), 277-255.
LebkİRİ İ., Abbou B., Kadiri L., Ouass A., Elamrİ A., Ouaddari H., Elkhattabİ O., LebkİRİ A., RİFİ E. H., 2021. Equilibrium, Kinetic Data, and Adsorptıon Mechanism for Lead Adsorptıon onto Polyacrylamıde Hydrogel. Journal of the Turkish Chemical Society Section A: Chemistry. 731-748.
El Kassimi A., Boutouil A., El Himri M., Rachid Laamari M., El Haddad M., 2020. Selective and competitive removal of three basic dyes from single, binary and ternary systems in aqueous solutions: A combined experimental and theoretical study. Journal of Saudi Chemical Society. 24(7), 527-544.
Juang R.S., Wu F.C., Tseng R.L., 1997. The Ability of Activated Clay for the Adsorption of Dyes from Aqueous Solutions. Environmental Technology. 18(5), 525-531.
Regti A., Laamari M.R., Stiriba S.E., Haddad M.E., 2016. Removal of Basic Blue 41 dyes using Persea americana-activated carbon prepared by phosphoric acid action. International Journal of Industrial Chemistry. 8(2), 187-195.
Karagozoglu B., Tasdemir M., Demirbas E., Kobya M., 2007. The adsorption of basic dye (Astrazon Blue FGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon: Kinetic and equilibrium studies. Journal of Hazardous Materials. 147(1-2), 297-306.
Roulia M., Vassiliadis A.A., 2005. Interactions between C.I. Basic Blue 41 and aluminosilicate sorbents. Journal of Colloid and Interface Science. 291(1), 37-44.
Besq A., Malfoy C., Pantet A., Monnet P., Righi D., 2003. Physicochemical characterisation and flow properties of some bentonite muds. Applied Clay Science. 23(5-6), 275-286.
Abbou B., LebkİRİ İ., Ouaddari H., Elkhattabİ O., Habsaoui A., Lebkiri A., Rifi E. H., 2021. Kinetic and thermodynamic study on adsorption of cadmium from aqueous solutions using natural clay. Journal of the Turkish Chemical Society Section A: Chemistry. 677-692.
Abbou B., Lebkiri I., Ouaddari H., Kadiri L., Ouass A., Habsaoui A., Lebkiri A., Rifi E. H., 2021. Removal of Cd(II), Cu(II) and Pb(II) by adsorption onto natural clay: kinetic and thermodynamic study. Turkish Journal of Chemistry. 45 (2), 362-376.
Sadki H., Ziat K., Saidi M., 2014. adsorption of dyes on activated local clay in aqueous solution. Journal of Materials and Environmental Science. 5(1), 2060-2065.
Essaadaoui Y., Lebkiri A., Rifi E., Kadiri L., Ouass A., 2018. Adsorption of cobalt from aqueous solutions onto Bark of Eucalyptus. Mediterranean Journal of Chemistry. 7(2), 145-155.
Ouaddari H., Beqqour D., Bennazha J., El Amrani I.E., Albizane A., Solhy A., Varma R.S., 2018. Natural Moroccan clays: Comparative study of their application as recyclable catalysts in Knoevenagel condensation. Sustainable Chemistry and Pharmacy. 10, 1-8.
Bentahar Y., Hurel C., Draoui K., Khairoun S., Marmier N., 2016. Adsorptive properties of Moroccan clays for the removal of arsenic(V) from aqueous solution. Applied Clay Science. 119, 385-392.
Latifi N., Meehan C.L., Majid M.Z.A., Horpibulsuk S., 2016. Strengthening montmorillonitic and kaolinitic clays using a calcium-based non-traditional additive: A micro-level study. Applied Clay Science. 132-133, 182-193.
Eloussaief M., Kallel N., Yaacoubi A., Benzina M., 2011. Mineralogical identification, spectroscopic characterization, and potential environmental use of natural clay materials on chromate removal from aqueous solutions. Chemical Engineering Journal. 168(3), 1024-1031.
Madejová J., Pálková H., 2017. NIR Contribution to The Study of Modified Clay Minerals Developments in Clay Science, pp. 447-481: Elsevier.
Fayoud N., Tahiri S., Alami Younssi S., Albizane A., Gallart-Mateu D., Cervera M.L., de la Guardia M., 2016. Kinetic, isotherm and thermodynamic studies of the adsorption of methylene blue dye onto agro-based cellulosic materials. Desalination and Water Treatment. 57(35), 16611-16625.
Bensalah J., Habsaoui A., Abbou B., Kadiri L., Lebkiri I., Lebkiri A., Rifi E.H., 2019. Adsorption of the anionic dye methyl orange on used artificial zeolites: kinetic study and modeling of experimental data. Mediterranean Journal of Chemistry. 9(4), 311-316.
Liu R., Zhang B., Mei D., Zhang H., Liu J., 2011. Adsorption of methyl violet from aqueous solution by halloysite nanotubes. Desalination. 268(1-3), 111-116.
Bouaziz F., Koubaa M., Kallel F., Chaari F., Driss D., Ghorbel R.E., Chaabouni S.E., 2015. Efficiency of almond gum as a low-cost adsorbent for methylene blue dye removal from aqueous solutions. Industrial Crops and Products. 74, 903-911.
Yang R., Li D., Li A., Yang H., 2018. Adsorption properties and mechanisms of palygorskite for removal of various ionic dyes from water. Applied Clay Science. 151, 20-28.
Regti A., Laamari M. R., Stiriba S.E., El Haddad M., 2017. Potential use of activated carbon derived from Persea species under alkaline conditions for removing cationic dye from wastewaters. Journal of the Association of Arab Universities for Basic and Applied Sciences. 24(1), 10-18.
Shabudeen P.S.S., Venckatesh R., Pattabhi S., 2006. Preparation and Utilization of Kapok Hull Carbon for the Removal of Rhodamine-B from Aqueous Solution. E-Journal of Chemistry. 3(2), 83-96.
Regti A., Ayouchia H.B.E., Laamari M.R., Stiriba S.E., Anane H., Haddad M.E., 2016. Experimental and theoretical study using DFT method for the competitive adsorption of two cationic dyes from wastewaters. Applied Surface Science. 390, 311-319.
Deniz F., Saygideger S.D., 2010. Investigation of adsorption characteristics of Basic Red 46 onto gypsum: Equilibrium, kinetic and thermodynamic studies. Desalination. 262(1-3), 161-165.
Kadiri L., Ouass A., Essaadaoui Y., Rifi E.H., Lebkiri A., 2018. Coriandrum Sativum seeds as a green low-cost biosorbent for methylene blue dye removal from aqueous solution: spectroscopic kinetic and thermodynamic studies. Mediterranean Journal of Chemistry. 7(3), 204-216.
Karaoğlu M.H., Doğan M., Alkan M., 2010. Kinetic analysis of reactive blue 221 adsorption on kaolinite. Desalination. 256(1-3), 154-165.
Chen S., Zhang J., Zhang C., Yue Q., Li Y., Li C., 2010. Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis. Desalination. 252(1-3), 149-156.
Bagane M., 2000. Elimination d'un colorant des effluents de l'industrie textile par adsorption. Annales de Chimie Science des Matériaux. 25(8), 615-625.
Lagergren S., 1898. Zur Theorie der Sogenannten Adsorption gel Osterstoffe Kungliga Svenska vetenskapsakademiens. Handlingar. 24, 1-39.
Gurses A., Dogar C., Yalcin M., Acikyildiz M., Bayrak R., Karaca S., 2006. The adsorption kinetics of the cationic dye, methylene blue, onto clay. Journal of Hazardous Materials, 131 (1-3), 217-228.
Langmuir I., 1918. THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. Journal of the American Chemical Society, 40 (9), 1361-1403.
Freundlich H., 1907. Über die Adsorption in Lösungen. Zeitschrift für Physikalische Chemie, 57 (1), 385-471.
Karim A. B., Mounir B., Hachkar M., Bakasse M., Yaacoubi A., 2010. Élimination du colorant basique « Bleu de Méthylène » en solution aqueuse par l’argile de Safi. Revue des sciences de l'eau, 23 (4), 375.
Benguella B., Yacouta-Nour A., 2009. Elimination des colorants acides en solution aqueuse par la bentonite et le kaolin. Comptes Rendus Chimie, 12 (6-7), 762-771.
Ouass A., Kadiri L., Essaadaoui Y., Belakhmima R. A., Lebkiri A., Rifi E. H., 2018. Removal of trivalent chromium ions from aqueous solutions by Sodium polyacrylate beads. Mediterranean Journal of Chemistry, 7 (2), 125-134.
Lebkiri I., Abbou B., Kadiri L., Ouass A., Elamri A., Ouaddari H., Elkhattabi O., Lebkiri A., Rifi E. H., 2021. Swelling properties and basic dye adsorption studies of polyacrylamide hydrogel. Desalination and Water Treatment, 233, 361-376.