Effects of SO₂, Ozone, and Ambient Air Pollution on Iron, TIBC, and Hematological Parameters in a Rat Model
Subject Areas :
Journal of Chemical Health Risks
Hossein Mashhadi-Abdolahi
1
,
Saba Navandi
2
,
Sorayya Kheirouri
3
,
Mohammad Alizadeh
4
,
Behnaz Barzegarzadeh
5
,
Hanieh Salehi-Pourmehr
6
,
Mehran Mesgari Abbasi
7
*
1 - Tabriz Health Services Management Research Center, Tabriz, Iran
2 - Faculty of Civil, Water, and Environmental Engineering, Shahid Beheshti University, Tehran, Iran
3 - Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
4 - Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
5 - Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
6 - Research Center for Evidence-based- medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
7 - Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
Received: 2023-02-08
Accepted : 2024-01-17
Published : 2024-08-20
Keywords:
air pollution,
Ozone,
Rats,
Hematology,
Sulfur dioxide,
Abstract :
With urbanization and industrialization, air pollution is one of the known health hazards and a severe problem in human societies. This study assessed the relationship of SO2, O3, and ambient air pollution on hematologic factors, serum iron, and TIBC in a rat model. A total of 32 male Wistar rats were enrolled in the study. They were randomly divided into the four study groups (n = 8 in each) as follows: The control, SO2 group exposed to 10 ppm, ozone group (O3) exposed to 0.6 ± 0.1 ppm, and ambient air pollution (AAP) group for five weeks (3 h/day). One-way analysis of variance was used to With urbanization and industrialization, air pollution is one of the known health hazards and a severe problem in human societies. This study assessed the relationship of SO2, O3, and ambient air pollution on hematologic factors, serum iron, and TIBC in a rat model. A total of 32 male Wistar rats were enrolled in the study. They were randomly divided into the four study groups (n = 8 in each) as follows: The control, SO2 group exposed to 10 ppm, ozone group (O3) exposed to 0.6 ± 0.1 ppm, and ambient air pollution (AAP) group for five weeks (3 h day-1). One-way ANOVA (analysis of variance) was used to compare parameters. Significant changes in RBC (P=0.026), hemoglobin concentration (P=0.029), mean corpuscular volume (MCV) (P=0.011), mean corpuscular hemoglobin concentration (MCHC) (P<0.001), monocytes (P=0.002), and basophils (P=0.022) were observed between control and AAP groups. The other parameters showed an insignificant difference for these two groups' comparison. In the of leucocytes’ differential counts, only basophils and monocytes were statistically high in the AAP group compared to the control group (P=0.002 and P=0.022, respectively). In terms of serum iron, the differences between the control and SO2 groups (P =0.008), or between the groups of O3 and APP (p=0.028) were statistically significant. The observed hematological and biochemical changes indicated the toxic effects of ambient air particles. Further epidemiological studies are necessary to investigate the impact of other air pollutants like NO2, NO, and CO on hematological and biochemical parameters.
References:
Samet J., Krewski D., 2007. Health effects associated with exposure to ambient air pollution. J Toxicol Environ Health A. Part A. 70(3-4), 227-242.doi: 10.1080/15287390600884644
Robertson S., Miller M.R., 2018. Ambient air pollution and thrombosis. Part Fibre Toxicol. 15(1), 1.doi: 10.1186/s12989-017-0237-x
Tiwary A., Williams I., 2018. Air pollution: measurement, modelling and mitigation: CRC Press;4th edition. pp. 722.
Kelishadi R., Mirghaffari N., Poursafa P., Gidding S.S., 2009. Lifestyle and environmental factors associated with inflammation, oxidative stress and insulin resistance in children. Atherosclerosis. 203(1), 311-319. doi: 10.1016/j.atherosclerosis.2008.06.022
Wang Y.Y., Lin S.Y., Liu P.H., Cheung B.M., Lai W.A., 2004. Association between hematological parameters and metabolic syndrome components in a Chinese population. J Diabetes Complications. 18(6), 322-327. doi: 10.1016/S1056-8727(04)00003-0
Jesri A., Okonofua E.C., Egan B.M., 2005. Platelet and white blood cell counts are elevated in patients with the metabolic syndrome. J Clin Hypertens.7(12), 705-711. doi: 10.1111/j.1524-6175.2005.04809.x
Chen J.C., Schwartz J., 2008. Metabolic syndrome and inflammatory responses to long-term particulate air pollutants. Environ Health Perspect. 116(5, 612-617. doi: 10.1289/ehp.10565
Forbes L.J., Patel M.D., Rudnicka A.R., Cook D.G., Bush T., Stedman J.R., Whincup P.H., Strachan D.P.,Anderson R.H., 2009. Chronic exposure to outdoor air pollution and markers of systemic inflammation. Epidemiology. 20(2), 245-253. doi: 10.1097 /EDE. 0b013e318190ea3f
Chan Y.L., Wang B., Chen H., Ho K.F., Cao J., Hai G., Jalaludin B., Herbert C., Thomas P.S, Saad S., OliverB.G.G., 2019. Pulmonary inflammation induced by low-dose particulate matter exposure in mice.Am J Physiol Lung Cell Mol Physiol. 317(3), L424-l430.doi: 10.1152/ajplung.00232.2019
Qin G., Wang J., Huo Y., Yan H., Jiang C., Zhou J., Wang X., Sang N., 2012. Sulfur dioxide inhalation stimulated mitochondrial biogenesis in rat brains. Toxicology. 300(1-2), 67-74.doi: 10.1016/j .tox.2012. 05.026
Davidson S.B., Penney D.G., 1988. Time course of blood volume change with carbon monoxide inhalation and its contribution to the overall cardiovascular response. Arch Toxicol. 61(4), 306-313.doi: 10.1007/BF00364854
Biser J.A., Vogel L.A., Berger J., Hjelle B., Loew S.S., 2004. Effects of heavy metals on immunocompetence of white-footed mice (Peromyscus leucopus). J Wildl Dis. 40(2), 173-184.doi: 10.7589/0090-3558-40.2.173
Tête N., Afonso E., Bouguerra G., Scheifler R., 2015. Blood parameters as biomarkers of cadmium and lead exposure and effects in wild wood mice (Apodemus sylvaticus) living along a pollution gradient. Chemosphere. 138, 940-946. doi: 10.1016/j. chemosphere.2014.12.031
Elbarbary M., Honda T., Morgan G., Guo Y., Guo Y., Kowal P., Negin J., 2020. Ambient Air Pollution Exposure Association with Anaemia Prevalence and Haemoglobin Levels in Chinese Older Adults. Int J Environ Res Public Health. 17(9), 3209. doi: 10.3390/ijerph17093209
Nikolić M., Nikić D., Stanković A., 2008. Effects of air pollution on red blood cells in children. Pol J Environ Stud. 17(28), 267.
Das P., Chatterjee P., 2015.Assessment of hematological profiles of adult male athletes from two different air pollutant zones of West Bengal, India. Environ Sci Pollut Res Int. 22(1), 343-349. doi: 10.1007/s11356-014-3314-9
Bárány P., 2001. Inflammation, serum C-reactive protein, and erythropoietin resistance. Nephrol Dial Transplant. 16(2), 224-227.doi: 10.1093/ndt/16.2.224
Quay J.L., Reed W., Samet J., Devlin R.B., 1998. Air pollution particles induce IL-6 gene expression in human airway epithelial cells via NF-kappaB activation. Am J Respir Cell Mol Biol.19(1), 98-106.doi: 10.1165/ajrcmb.19.1.3132
D'Angelo G., 2013. Role of hepcidin in the pathophysiology and diagnosis of anemia. Blood Res. 48(1),10-15. doi: 10.5045/br.2013.48.1.10
Fauzie A., 2019. Venkataramana G. Effects of Chronic Exposure to Particulate Air Pollution on Cardiovascular System: An Experimental Study Using Mice Models. Paper presented at: Journal of Physics: DOI: 10.1088/1742-6596/1351/1/012098.
Kooter I.M., Boere A.J., Fokkens P.H., Leseman D.L., Dormans J.A., Cassee F.R.,2006. Response of spontaneously hypertensive rats to inhalation of fine and ultrafine particles from traffic: experimental controlled study. Part Fibre Toxicol. 3, 7.doi: 10.1186/1743-8977-3-7
Goto Y., Hogg J.C., Shih C.H., Ishii H., Vincent R., van Eeden S.F., 2004. Exposure to ambient particles accelerates monocyte release from bone marrow in atherosclerotic rabbits. Am J Physiol Lung Cell Mol Physiol. 287(1), L79-85. doi: 10.1152/ajplung. 00425.2003
Liao D., Heiss G., Chinchilli V.M., Duan Y., Folsom A.R., Lin H.M., Salomaa V., 2005. Association of criteria pollutants with plasma hemostatic/inflammatory markers: a population-based study. J Expo Sci Environ Epidemiol. 15(4), 319-328. doi: 10.1038/sj.jea.7500408
Steenhof M., Janssen N.A., Strak M., Hoek G., Gosens I., Mudway I.S., Kelly F.J., Harrison R.M., Pieters R.H.H.,Cassee F.R., Brunekreef B., 2014. Air pollution exposure affects circulating white blood cell counts in healthy subjects: the role of particle composition, oxidative potential and gaseous pollutants - the RAPTES project. Inhal Toxicol. 26(3), 141-165. doi: 10.3109/08958378.2013.861884
Brüske I., Hampel R., Socher M.M., Rückerl R., Schneider A., Heinrich J., Oberdörster G., Wichmann H.E., PetersA.., 2010. Impact of ambient air pollution on the differential white blood cell count in patients with chronic pulmonary disease. Inhal Toxicol. 22(3), 245-252. doi: 10.3109/08958370903207274
Rudez G., Janssen N.A., Kilinc E., Leebeek F.W., Gerlofs-Nijland M.E., Spronk H.M., Cate H., Cassee F.R., Maat M.P.M..,2009. Effects of ambient air pollution on hemostasis and inflammation. Environ Health Perspect. 117(6): 995-1001.doi: 10.1289/ ehp.0800437
Kakhlon O., Cabantchik Z.I., 2020. The labile iron pool: characterization, measurement, and participation in cellular processes. Free Radic Biol Med. 33(8), 1037-1046.doi: 10.1016/s0891-5849(02)01006-7
He H., An F., Huang Q., Kong Y., He D., Chen L., Song H., 2020. Metabolic effect of AOS-iron in rats with iron deficiency anemia using LC-MS/MS based metabolomics. Food Res Int. 130:108913.doi: 10.1016/j.foodres.2019.108913
Schreinemachers D.M., Ghio A.J., 2016. Effects of Environmental Pollutants on Cellular Iron Homeostasis and Ultimate Links to Human Disease. Environ Health Insights. 10, 35-43.doi: 10.4137/EHI.S36225.