Active Packaging Film Based on Lysozyme/Polyvinyl Alcohol / Alyssum Homalocarpum Seeds Gum
Subject Areas : Journal of Chemical Health RisksAnna Abdolshahi 1 , Leila Monjazeb Marvdashti 2 * , Bahare Salehi 3 , Filippo Maggi 4 , Javad Sharifi-Rad 5 *
1 - Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran
2 - Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
3 - Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
4 - School of Pharmacy, University of Camerino, 62032 Camerino, Italy
5 - Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran
Keywords: Mechanical Properties, lysozyme, Active packaging, Antimicrobial Activity, PVA-AHSG composite films,
Abstract :
The active films composed of polyvinyl alcohol/Alyssum homolocarpum seeds gum (PVA-AHSG) in corporatinglysozyme (LY) are developed and characterized. The LY affects the thickness, solubility, and water vapor permeability, mechanical, microstructural, and optical properties of PVA-AHSG films and also the antimicrobial activities of obtained films are evaluated. The LY content increased the thickness of composite films. The LY addition led to an increase in water solubility, moisture contents, and contact angle, and decreased density. The control films without LY had the lower opacity and acted as a weak barrier against the water vapor. The LY reduced elongation at break and slightly increased tensile strength and elastic modulus. The electron micrographs showed that the control films had a smoother structure, and the addition of LY formed films with a rough surface. Fourier Transform-Infrared Spectra indicated some interactions between PVA and AHSG chains and LY. Functional activities were found against Gram-positive Listeria monocytogenes and Staphylococcus aureus.
1. Manea L., Buruleanu L., Rustad T., Manea I., Barascu E., 2017. Overview on the microbiological quality of some meat products with impact on the food safety and health of people. E-Health and Bioengineering Conference (EHB). 105-108.
2. Monjazeb Marvdashti L, Abdulmajid Ayatollahi S, Salehi B, Sharifi‐Rad J, Abdolshahi A, Sharifi‐Rad R, Maggi F, 2020. Optimization of edible Alyssum homalocarpum seed gum‐chitosan coating formulation to improve the postharvest storage potential and quality of apricot (Prunus armeniaca L.). Journal of Food Safety:e12805.
3. Heydari-Majd M., Ghanbarzadeh B., Shahidi-Noghabi M., Najafi M.A., Hosseini M., 2019. A new active nanocomposite film based on PLA/ZnO nanoparticle/essential oils for the preservation of refrigerated Otolithes ruber fillets. Food Packaging and Shelf Life. 19, 94-103.
4. Abdolshahi A., Tabatabaei Yazdi F., Shabani A., Mortazavi S., 2019. Active gelatin-mannan film: physicochemical, antifungal and aflatoxin binding properties. International Food Research Journal.26(6): 1803-1812.
5. Siragusa G., Cutter C., Willett J., 1999. Incorporation of bacteriocin in plastic retains activity and inhibits surface growth of bacteria on meat. Food Microbiology. 16(3), 229-235.
6. Moradi M., Tajik H., Rohani S. M. R., Mahmoudian A., 2016. Antioxidant and antimicrobial effects of zein edible film impregnated with Zataria multiflora Boiss. essential oil and monolaurin. LWT-Food Science and Technology. 72, 37-43.
7. Sung S.Y., Sin L.T., Tee T.T., Bee S.T., Rahmat A., Rahman W., Tan A.C., Vikhraman M., 2013. Antimicrobial agents for food packaging applications. Trends in Food Science & Technology. 33(2), 110-123.
8. Wang H., Liu H., Chu C., She Y., Jiang S., Zhai L., Jiang S., Li X., 2015. Diffusion and antibacterial properties of nisin-loaded chitosan/poly (L-lactic acid) towards development of active food packaging film. Food and bioprocess technology. 8(8), 1657-1667.
9. Shakouri S., Ziaolhagh H. R., Sharifi-Rad J., Heydari-Majd M., Tajali R., Nezarat S., Teixeira da Silva J. A., 2015. The effect of packaging material and storage period on microwave-dried potato (Solanum tuberosum L.) cubes. Journal of Food Science and Technology. 52(6), 3899-3910.
10. Abdolshahi A., Shabani A.A., Mortazavi S.A., Marvdashti L.M., 2018. Aflatoxin binding efficiency of Saccharomyces cerevisiae mannoprotein in contaminated pistachio nuts. Food Control. 87, 17-21.
11. Lavoine N., Givord C., Tabary N., Desloges I., Martel B., Bras J., 2014. Elaboration of a new antibacterial bio-nano-material for food-packaging by synergistic action of cyclodextrin and microfibrillated cellulose. Innovative Food Science & Emerging Technologies. 26, 330-340.
12. Marvdashti L.M., Abdolshahi A., Hedayati S., Sharifi-Rad M., Iriti M., Salehi B., Sharifi-Rad J., 2018. Pullulan gum production from low-quality fig syrup using Aureobasidium pullulans. Cellular and Molecular Biology. 64(8), 22-26.
13. Mishra A.P., Sharifi-Rad M., Shariati M. A., Mabkhot Y.N., Al-Showiman S.S., Rauf A., Salehi B., Župunski M., Sharifi-Rad M., Gusain P., Sharifi-Rad J., Suleria H. A. R., Iriti M., 2018. Bioactive compounds and health benefits of edible Rumex species-A review. Cellular and Molecular Biology. 64(8), 27-34.
14. Mishra A.P., Saklani S., Sharifi-Rad M., Iriti M., Salehi B., Maurya V.K., Rauf A., Milella L., Rajabi S., Baghalpour N., Sharifi-Rad J., 2018. Antibacterial potential of Saussurea obvallata petroleum ether extract: A spiritually revered medicinal plant. Cellular and Molecular Biology. 64(8), 65-70.
15. Abdolshahi A., Marvdashti L.M., Salehi B., Sharifi‐Rad M., Ghobakhloo S., Iriti M., Sharifi‐Rad J., 2019. Antifungal activities of coating incorporated with Saccharomyces cerevisiae cell wall mannoprotein on Aspergillus flavus growth and aflatoxin production in pistachio (Pistacia vera L.). Journal of Food Safety. 39(2), e12608.
16. Hasanzadeh H., Rezaie-Tavirani M., Seyyedi S., Emadi A., 2015. Proteomics Study of extremely low frequency electromagnetic field (50 Hz) on human neuroblastoma cells. Koomesh. 17(1), 233-238.
17. Noripour S., Molaei A., Bandari R., Emadi A., Far S.M.F., Forozeshfard M., 2017. Comparison of the results of simultaneous surfactant administration and nasal continuous positive airway pressure (INSURE) and Non-administration of surfactant for the treatment of infants with respiratory distress syndrome. Journal of Comprehensive Pediatrics. 8(1):e37462
18. Nasr R., Hasanzadeh H., Khaleghian A., Moshtaghian A., Emadi A., Moshfegh S., 2018. Induction of apoptosis and inhibition of invasion in gastric cancer cells by titanium dioxide nanoparticles. Oman Medical Journal. 33(2), 111-117
19. Mlalila N., Hilonga A., Swai H., Devlieghere F., Ragaert P., 2018. Antimicrobial packaging based on starch, poly (3-hydroxybutyrate) and poly (lactic-co-glycolide) materials and application challenges. Trends in Food Science & Technology;74:1-11
20. Raeisi S., Sharifi-Rad M., Quek S.Y., Shabanpour B., Sharifi-Rad J., 2016. Evaluation of antioxidant and antimicrobial effects of shallot (Allium ascalonicum L.) fruit and ajwain (Trachyspermum ammi (L.) Sprague) seed extracts in semi-fried coated rainbow trout (Oncorhynchus mykiss) fillets for shelf-life extension. LWT - Food Science and Technology. 65, 112-121.
21. Joerger R.D., 2007. Antimicrobial films for food applications: a quantitative analysis of their effectiveness. Packaging Technology and Science. 20(4), 231-273.
22. Muriel-Galet V., Talbert J.N., Hernandez-Munoz P., Gavara R., Goddard J., 2013. Covalent immobilization of lysozyme on ethylene vinyl alcohol films for nonmigrating antimicrobial packaging applications. Journal of Agricultural and Food Chemistry. 6 (27), 6720-6727.
23. Ozer B.B.P., Uz M., Oymaci P., Altinkaya S.A., 2016. Development of a novel strategy for controlled release of lysozyme from whey protein isolate based active food packaging films. Food Hydrocolloids. 61, 877-886.
24. Parisien A., Allain B., Zhang J., Mandeville R., Lan C., 2008. Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. Journal of Applied Microbiology. 104(1), 1-13.
25. Mecitoğlu Ç., Yemenicioğlu A., Arslanoğlu A., Elmacı Z.S., Korel F., Çetin A.E., 2006. Incorporation of partially purified hen egg white lysozyme into zein films for antimicrobial food packaging. Food Research International. 39(1), 12-21.
26. Ünalan İ.U., Korel F., Yemenicioğlu A., 2011. Active packaging of ground beef patties by edible zein films incorporated with partially purified lysozyme and Na2EDTA. International Journal of Food Science &Technology. 46(6), 1289-1295.
27. Ferrari R., Callerio C., Podio G., 1959. Antiviral activity of lysozyme. Nature. 183(4660), 548-552.
28. Ntzimani A.G., Giatrakou V.I., Savvaidis I.N., 2010. Combined natural antimicrobial treatments (EDTA, lysozyme, rosemary and oregano oil) on semi cooked coated chicken meat stored in vacuum packages at 4 C: Microbiological and sensory evaluation. Innovative Food Science & Emerging Technologies. 11(1), 187-196.
29. Ogundele M., 1998. A novel anti-inflammatory activity of lysozyme: modulation of serum complement activation. Mediators of Inflammation. 7 (5), 363-365.
30. Rymuszka A., Studnicka M., Siwicki A.K., Sierosławska A., Bownik A., 2005. The immunomodulatory effects of the dimer of lysozyme (KLP-602) in carp (Cyprinus carpio L)—in vivo study. Ecotoxicology and Environmental Safety, 61(1), 121-127.
31. Hesarinejad M.A., Razavi S.M., Koocheki A., 2015. Alyssum homolocarpum seed gum: Dilute solution and some physicochemical properties. International Journal of Biological Macromolecules. 81, 418-426.
32. Marvdashti L.M., Yavarmanesh M., Koocheki A., 2019. Controlled release of nisin from polyvinyl alcohol-Alyssum homolocarpum seed gum composite films: Nisin kinetics. Food Bioscience. 28, 133-139.
33. Koocheki A., Kadkhodaee R., Mortazavi S.A., Shahidi F., Taherian A.R., 2009. Influence of Alyssum homolocarpum seed gum on the stability and flow properties of O/W emulsion prepared by high intensity ultrasound. Food Hydrocolloids. 23(8), 2416-2424.
34. Koocheki A., Mortazavi S.A., Shahidi F., Razavi S., Kadkhodaee R., Milani J.M., 2010. Optimization of mucilage extraction from Qodume shirazi seed (Alyssum homolocarpum) using response surface methodology. Journal of Food Process Engineering, 33(5), 861-882.
35. Koocheki A., Mortazavi S.A., Shahidi F., Razavi S.M.A., Taherian A., 2009. Rheological properties of mucilage extracted from Alyssum homolocarpum seed as a new source of thickening agent. Journal of Food Engineering. 91(3), 490-496.
36. Marvdashti L.M., Koocheki A., Yavarmanesh M., 2019. Characterization, Release Profile and Antimicrobial Properties of Bioactive Polyvinyl Alcohol-Alyssum homolocarpum Seed Gum-Nisin Composite Film. Food Biophysics. 1-12.
37. Marvdashti L.M., Yavarmanesh M., Koocheki A., 2019. In vitro release study of nisin from active polyvinyl alcohol-Alyssum homolocarpum seed gum films at different temperatures. Polymer Testing. 79, 106032.
38. Monjazeb Marvdashti L., Koocheki A., Yavarmanesh M., 2017. Alyssum homolocarpum seed gum-polyvinyl alcohol biodegradable composite film: Physicochemical, mechanical, thermal and barrier properties. Carbohydrate Polymers. 155, 280-293.
39. Monjazeb M.L., Yavarmanesh M., Koocheki A., 2017. The effect of different concentrations of glycerol on properties of blend films based on polyvinyl alcohol-allysumhomolocarpum seed gum. Iranian food science and technology research journal. 5(41);663-677
40. Gontard N., Guilbert S., 1994. Bio-packaging: technology and properties of edible and/or biodegradable material of agricultural origin Food packaging and preservation. Springer. pp. 159-181
41. ASTM D., 2002. 96-00. Standard Test Methods for Water Vapor Transmission of Materials
42. Ojagh S.M., Rezaei M., Razavi S.H., Hosseini S.M.H., 2010. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry. 122(1), 161-166.
43. Guiga W., Swesi Y., Galland S., Peyrol E., Degraeve P., Sebti I., 2010. Innovative multilayer antimicrobial films made with Nisaplin® or nisin and cellulosic ethers: Physico-chemical characterization, bioactivity and nisin desorption kinetics. Innovative Food Science & Emerging Technologies. 11(2), 352-360.
44. Abdolshahi A., Tabatabaiee Yazdi F., Shabani A.A., Mortazavi S.A., Mohammadi Nafchi A., 2016. Antifungal properties of gelatin-based coating containing mannoprotein from Saccharomyces Cerevisiae on Aspergillus flavus growth in pistachio. Journal of Mazandaran University of Medical Sciences. 26(139), 93-102.
45. Galus S., Lenart A., 2013. Development and characterization of composite edible films based on sodium alginate and pectin. Journal of Food Engineering. 115(4), 459-465.
46. Bonomo R.C.F., Santos T.A., Santos L.S., Fontan R.D.C.I., Rodrigues L.B., dos Santos Pires A.C., Veloso C.M., Gandolfi O. R.R., Bonomo P., 2018. Effect of the Incorporation of Lysozyme on the Properties of Jackfruit Starch Films. Journal of Polymers and the Environment. 26(2), 508-517.
47. Park S.I., Daeschel M., Zhao Y., 2004. Functional properties of antimicrobial lysozyme chitosan composite films. Journal of Food Science.69(8); 215-21
48. Kalburcu T., Tabak A., Ozturk N., Tuzmen N., Akgol S., Caglar B., Denizli A., 2015. Adsorption of lysozyme from aqueous solutions by a novel bentonite–tyrptophane (Bent–Trp) microcomposite affinity sorbent. Journal of Molecular Structure. 1083, 156-162.
49. Zhu X., Zhang L., Fu A., Yuan H., 2016. Efficient purification of lysozyme from egg white by 2-mercapto-5-benzimidazolesulfonic acid modified Fe3O4/Au nanoparticles. Materials Science and Engineering. C, 59, 213-217.
50. Motedayen A.A., Khodaiyan F., Salehi E.A., 2013. Development and characterisation of composite films made of kefiran and starch. Food Chemistry. 136(3-4), 1231-1238.
51. Stuchell Y.M., Krochta J.M., 1994. Enzymatic treatments and thermal effects on edible soy protein films. Journal of Food Science. 59(6), 1332-1337.
52. Gontard N., Duchez C., CUQ J.L., Guilbert S., 1994. Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. International Journal of Food Science &Technology. 29(1), 39-50.
53. Sun Q., Sun C., Xiong L., 2013. Mechanical, barrier and morphological properties of pea starch and peanut protein isolate blend films. Carbohydrate Polymers. 98(1), 630-637.
54. Wu C., Peng S., Wen C., Wang X., Fan L., Deng R., Pang J., 2012. Structural characterization and properties of konjac glucomannan/curdlan blend films. Carbohydrate Polymers. 89(2), 497-503.
55. Manab A., Sawitri M.E., Al Awwaly K.U., Widati A.S., Haniyah Y.S., 2016. Antibacterial and physical properties of composite edible film containing modified lysozyme and sodium cyanoborohydrate. International Journal of CemTech Research. 9(4), 421-9
56. Chambi H.N.M., Grosso C.R.F., 2011. Mechanical and water vapor permeability properties of biodegradables films based on methylcellulose, glucomannan, pectin and gelatin. Food Science and Technology. 31(3), 739-746.
57. Kurt A., Kahyaoglu T., 2014. Characterization of a new biodegradable edible film made from salep glucomannan. Carbohydrate Polymers. 104, 50-58.
58. Muscat D., Adhikari R., McKnight S., Guo Q., Adhikari B., 2013. The physicochemical characteristics and hydrophobicity of high amylose starch–glycerol films in the presence of three natural waxes. Journal of Food Engineering. 119(2), 205-219.
59. Tang C.H., Jiang Y., 2007. Modulation of mechanical and surface hydrophobic properties of food protein films by transglutaminase treatment. Food Research International. 40(4), 504-509.
60. Teerakarn A., Hirt D., Acton J., Rieck J., Dawson P., 2002. Nisin diffusion in protein films: effects of film type and temperature. Journal of Food Science. 67(8), 3019-3025.
61. Li X., Tu H., Huang M., Chen J., Shi X., Deng H., Wang S., Du Y., 2017. Incorporation of lysozyme-rectorite composites into chitosan films for antibacterial properties enhancement. International Journal of Biological Macromolecules. 102, 789-795.
62. Pereda M., Ponce A., Marcovich N., Ruseckaite R., Martucci J., 2011. Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloids. 25(5), 1372-1381.
63. Villalobos R., Chanona J., Hernández P., Gutiérrez G., Chiralt A., 2005. Gloss and transparency of hydroxypropyl methylcellulose films containing surfactants as affected by their microstructure. Food Hydrocolloids. 19(1), 53-61.
64. Xu X., Li B., Kennedy J., Xie B., Huang M., 2007. Characterization of konjac glucomannan–gellan gum blend films and their suitability for release of nisin incorporated therein. Carbohydrate Polymers. 70(2), 192-197.
65. Guerrero P., Retegi A., Gabilondo N., De la Caba K., 2010. Mechanical and thermal properties of soy protein films processed by casting and compression. Journal of Food Engineering. 100(1), 145-151.
66. Hamill A.C., Wang S.C., Lee C.T., 2005. Probing lysozyme conformation with light reveals a new folding intermediate. Biochemistry. 44(46), 15139-15149.
67. Zhang B., Tao H., Niu X., Li S., Chen H.Q., 2017. Lysozyme distribution, structural identification, and in vitro release of starch-based microgel-lysozyme complexes. Food Chemistry. 227, 137-141.
68. Abugoch L.E., Tapia C., Villamán M.C., Yazdani-Pedram M., Díaz-Dosque M., 2011. Characterization of quinoa protein–chitosan blend edible films. Food Hydrocolloids. 25(5), 879-886.
69. Freddi G., Romano M., Massafra M., Tsukada M., 1995. Chitosan/gelatin scaffolds obtained by soft lithography. Journal of Applied Polymer Science. 56, 1537-1545.
70. Mchugh T.H., Aujard J.F., Krochta J., 1994. Plasticized whey protein edible films: water vapor permeability properties. Journal of Food Science. 59(2), 416-419.
71. Bayarri M., Oulahal N., Degraeve P., Gharsallaoui A., 2014. Properties of lysozyme/low methoxyl (LM) pectin complexes for antimicrobial edible food packaging. Journal of Food Engineering. 131, 18-25.
72. Jouki M., Yazdi F.T., Mortazavi S.A., Koocheki A., 2013. Physical, barrier and antioxidant properties of a novel plasticized edible film from quince seed mucilage. International Journal of Biological Macromolecules. 62, 500-507.
73. Güçbilmez Ç.M., Yemenicioğlu A., Arslanoğlu A., 2007. Antimicrobial and antioxidant activity of edible zein films incorporated with lysozyme, albumin proteins and disodium EDTA. Food Research International. 40(1), 80-91.
74. Fabra M.J., Sánchez-González L., Chiralt A., 2014. Lysozyme release from isolate pea protein and starch based films and their antimicrobial properties. LWT-Food Science and Technology. 55(1), 22-26.
75. Kaewprachu P., Osako K., Benjakul S., Rawdkuen S., 2015. Quality attributes of minced pork wrapped with catechin–lysozyme incorporated gelatin film. Food Packaging and Shelf Life. 3, 88-96.
76. Dekina S., Romanovska I., Ovsepyan A., Tkach V., Muratov E., 2016. Gelatin/carboxymethyl cellulose mucoadhesive films with lysozyme: Development and characterization. Carbohydrate Polymers. 147, 208-215.