Anti-Quorum Sensing Potential of Potato Rhizospheric Bacteria
Subject Areas : Journal of Chemical Health RisksAdeleh Sobhanipour 1 * , Keivan Behboudi 2 , Esmaeil Mahmoudi 3 , Mohsen Farzaneh 4
1 - Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
2 - Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj,
3 - Department of Plant Protection, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
Transgenesis Center of Excellence, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan
4 - Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
Keywords: Antibiotic resistance, AHL, Rhizobacteria, Anti QS,
Abstract :
The occurrence of antibiotic-resistant pathogenic bacteria is becoming a serious problem. The rise of multiresistance strains has forced the pharmaceutical industry to come up with new generation of more effective and potent antibiotics, therefore creating development of antivirulence compounds. Due to extensive usage of cell-to-cell bacterial communication (QS) systems to monitor the production of virulence factors, disruption of QS system results in creation of a promising strategy for the control of bacterial infection. Numerous natural quorum quenching (QQ) agents have been identified. In addition, many microorganisms are capable of producing smaller molecular QS inhibitors and/or macromolecular QQ enzymes. In present survey, anti QS activity of 1280 rhizosphere bacteria was assessed using the Pectobacterium carotovorum as AHL-donor and Chromobacterium violaceum CV026 as biosensor system. The results showed that 61 strains had highly AHL-degrading activity. Both Lux I and Lux R activity were affected by some isolates, suggesting that the rhizobacteria target both QS signal and receptor. These soil microorganisms with their anti-QS activity have the potential to be novel therapeutic agents for reducing virulence and pathogenicity of antibiotic resistant bacteria.
1. Tang K., Zhang X.H., 2014. Quorum quenching agents: Resources for antivirulence therapy- a review. Mur Drugs. 12, 3245-3282.
2. Romero M., Mayer C., Muras A., Otero A. 2015. Silencing bacterial communication through enzymatic quorum-sensing inhibition. Appl Environ Microbiol. 78, 6345-6348.
3. Wolf-Rainer A., 2016. Going beyond the Control of Quorum-Sensing to Combat Biofilm Infections. Antibiotics. 5(3), doi: 10.3390/5010003.
4. Nunes-alves C., 2015. Taking advantage of quorum sensing. Nature Rev Microbiol. 13, 252.
5. Rein M., Hein N., Schmid F., Speck T., 2016. Collective Behavior of Quorum-Sensing Run-and-Tumble Particles under Confinement. Phys Rev Lett. 116,058102.
6. Umesha S., Shivakumar J., 2013. Bcterial quorum sensing and its application in biotechnology. Int J Pharma Bio Sci. 4 (2b), 850-861.
7. Galloway W.R.J.D., Hodgkinson J.T., Bowden S., Welch M., Spring D.R., 2012. Applications of small molecule activators and inhibitors of quorum sensing in Gram-negative bacteria - a review. Trends Microbiol. 20(9), 449-458.
8. Thoendel M., Kavanaugh J.S., Flack C.E., Horswill A.R., 2011. Peptide signaling in the Staphylococci. Chem Rev. 111, 117–151.
9. Kim M.K., Ingremeau F., Zhao A., Bassler B.L., Stone H.A., 2016. Local and global consequences of flow on bacterial quorum sensing. Nature Microbiol. 1, 15005 , dio: 10.1038.
10. Swem L.R., Swem D.L., O’Loughlin C.T., Gatmaitan R., Zhao B., Ulrich S.M., Bassler B.L., 2009. A Quorum-sensing antagonist targets both membrane-bound and cytoplasmic receptors and controls bacterial pathogenicity. Molecular Cell. 35, 143–153.
11. Kalia V.C., 2013. Quorum sensing inhibitors: An overview. Biotechnol Adv. 31, 224-245.
12. Jung K., Odenbach T., Timmen M., 2007. The quorum-sensing hybrid histidine kinase LuxN of Vibrio harveyi contains a periplasmically located N terminus. J Bacteriol. 189, 2945–2948.
13. Swem L.R., Swem D.L., Wingreen N.S., Bassler B.L., 2008. Deducing receptor signaling parameters from in vivo analysis: LuxN/AI-1 quorum sensing in Vibrio harveyi. Cell. 134, 461–473.
14. Tu K.C., Bassler B.L., 2007. Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi. Genes Dev. 21, 221–233.
15. Chenia H. Y., 2013. Anti-quorum sensing potential of crude Kigelia africana fruit extracts. Sensors. 13, 2802-2817.
16. McClean K.H., Winson M.K., Fish L., Taylor A., Chabra S.R., Camara M., Dayykin M., Lamb J.H., Swift S., Bycroft B.W., Stewart G.S.A.B., Williams P., 1997. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acyl homoserine lactones. Microbiol.143, 3703-3711.
17. Schaad N.W., Jones J.B., Chun W., 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. APS Press, St. Paul, MN, USA.
18. Morohoshi T., Someya N., Ikeda T., 2009. Novel N-Acylhomoserin lactone- degrading bacteria isolated from the leaf surface of Solanum tuberosum and their quorum quenching properties. Biosci Biotech Bioch. 73: 2124-2127.
19. Yates E.A., Philipp B., Buckley C., Atkinson S., Chhabra S.R., Sockett R.E., Goldner M., Dessaux Y., Camara M., Smith H., Williams P., 2002. N-Acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain lengthdependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun. 70: 5635-5646.
20. Dong Y.H., Gusti A.R., Zhang Q., Xu J.L., Zhang L.H., 2002. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. App Environ Microbiol68: 1754-1759.
21. Mahmoudi E., Ahmadi A., Sayed-Tabatabaei B.E., Ghobadi C., Akhavan A., Hasanzadeh N., Venturi V., 2011. A novel AHL-degrading rhizobacterium quenches the virulence of Pectobacterium atrosepticum on potato plant. Plant Pathol. 93(3), 587-594.
22. Shaw P.D., Ping G., Daly S.L., Cha C., Cronan J.E., Rinehart K.L., Farrand S.K., 1997. Detecting and characterizing Nacyl- homoserine lactone signal molecules by thin layer chromatography. Biochem. 94: 6036-6041.
23. Redfield R.J., 2002. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 10, 365–370.
24. Decho A.W., Norman R.S., Visscher P.T., 2010. Quorum sensing in natural environments: Emerging views from microbial mats. Trends Microbiol. 18, 73–80.
25. Sperandio V., 2007. Novel approaches to bacterial infection therapy by interfering with bacteria to bacteria signaling. Exp Rev Anti-Infect Ther.5, 271-276.
26. Kalia, V.C., Purohit, H.J., 2011. Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol. 37, 121–40.
27. Reimmann C., Ginet N., Michel L., Keel C., Michaux P., Krishnapillai V., Zala M., Heurlier k., Triandafillu K., Harms H., Defago G., Hass D., 2002. Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiol. 148, 923-932.
28. Uroz S., Dessaux Y., Oger P., 2009. Qourum sensing and Qourum quenching: the Yin and Yang of bacterial communicatio. Chembiochem. 10, 205–216.
29. Dembitsky V.A., Al Quntar A.A.A., Srebnik M., 2011. Natural and synthetic small boroncontaining molecules as potential inhibitors of bacterial and fungal quorum sensing. Chem Rev. 111, 209–37.
30. Kaufmann G.F., Sartorio R., Lee S.H., Mee J.M., Altobell I. L.J., Kujawa D.P., 2006. Antibody interference with N-acyl homoserine lactone-mediated bacterial quorum sensing. J Am Chem Soc. 128, 2802–3.
31. Vattem D.A., Mihalik K., Crixell S.H., McLean R.J.C., 2007. Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia. 78, 302–310.
32. Mihalik K., Chung D.W., Crixell S.H., McLean R.J.C., Vattem D.A., 2008. Quorum sensing modulators of Pseudomonas aeruginosa characterized in Camellia sinensis. Asian J Trad Med. 3, 12–23.